15 câu Trắc nghiệm Phương pháp quy nạp toán học có đáp án (Nhận biết)
222 người thi tuần này 4.6 4.6 K lượt thi 15 câu hỏi 25 phút
🔥 Đề thi HOT:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bộ 20 đề thi giữa học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
184 câu Trắc nghiệm Toán 11 Bài 1: Hàm số lượng giác có đáp án (Mới nhất)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
24 câu Trắc nghiệm Ôn tập Toán 11 Chương 2 Hình học có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. n = k -1
B. n = k -2
C. n = k +1
D. n = k +2
Lời giải
Đáp án C
Nếu ta giả sử mệnh đề đúng với n = k thì ta cần chứng minh mệnh đề đúng với n = k + 1
Câu 2
A. n = 1
B. n = k
C. n = k + 1
D. n = p
Lời giải
Đáp án D
Đối với bài toán chứng minh P(n) đúng với mọi với p là số tự nhiên cho trước thì:
- Bước 1: Chứng minh P(n) đúng với n = p
- Bước 2: Với là một số nguyên dương tùy ý, giả sử P(n) đúng với n = k, chứng minh P(n) cũng đúng khi n = k + 1.
Từ đó ta thấy, ở bước đầu tiên ta cần chứng minh mệnh đề đúng với n = p chứ không phải n = 1.
Lời giải
Đáp án B
Ở bước 2 ta cần giả sử mệnh đề đúng với n = k với .
Câu 4
A. Chỉ có bước 1 đúng.
B. Chỉ có bước 2 đúng.
C. Cả hai bước đều đúng.
D. Cả hai bước đều sai.
Lời giải
Đáp án C
Đối với bài toán chứng minh P(n) đúng với mọi với p là số tự nhiên cho trước thì:
- Bước 1: Chứng minh P(n) đúng với n = p.
- Bước 2: Với là một số nguyên dương tùy ý, giả sử P(n) đúng với n = k, chứng minh P(n) cũng đúng khi n = k + 1.
Từ lý thuyết trên ta thấy cả hai bước trên đều đúng.
Câu 5
A. n = k
B. n = k + 1
C. n = k + 2
D. n = k + 3
Lời giải
Đáp án B
Phương pháp quy nạp toán học:
- Bước 1: Chứng minh P(n) đúng với n = 1.
- Bước 2: Với k là một số nguyên dương tùy ý, giả sử P(n) đúng với n = k, chứng minh P(n) cũng đúng khi n = k+1.
Do đó ta thấy, ở bước 2, nếu ta giả sử mệnh đề đúng với n = k+1 thì ta cần chứng minh mệnh đề đúng với n = k+1
Câu 6
A. Học sinh trên chứng minh đúng.
B. Học sinh chứng minh sai vì không có giả thiết qui nạp.
C. Học sinh chứng minh sai vì không dùng giả thiết qui nạp.
D. Học sinh không kiểm tra bước 1 (bước cơ sở) của phương pháp qui nạp
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. Mọi số nguyên dương đều thuộc Q.
B. Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc Q.
C. Mọi số nguyên bé hơn k đều thuộc Q.
D. Mọi số nguyên đều thuộc Q.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.