Câu hỏi:
19/03/2021 1,622Đối với bài toán chứng minh P(n) đúng với mọi với p là số tự nhiên cho trước thì ở bước 1 ta cần chứng minh mệnh đề đúng với:
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác
Quảng cáo
Trả lời:
Đáp án D
Đối với bài toán chứng minh P(n) đúng với mọi với p là số tự nhiên cho trước thì:
- Bước 1: Chứng minh P(n) đúng với n = p
- Bước 2: Với là một số nguyên dương tùy ý, giả sử P(n) đúng với n = k, chứng minh P(n) cũng đúng khi n = k + 1.
Từ đó ta thấy, ở bước đầu tiên ta cần chứng minh mệnh đề đúng với n = p chứ không phải n = 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến P(n) đúng với mọi số tự nhiên (p là một số tự nhiên), ta tiến hành hai bước:
Bước 1, kiểm tra mệnh đề P(n) đúng với n = p
Bước 2, giả thiết mệnh đề P(n) đúng với số tự nhiên bất kỳ và phải chứng minh rằng nó cũng đúng với n = k + 1
Trong hai bước trên:
Câu 4:
Một học sinh chứng minh mệnh đề chia hết cho 7, như sau:
Giả sử (*) đúng với n = k tức là + 1 chia hết cho 7
Ta có: + 1 = 8 - 7, kết hợp với giả thiết + 1 chia hết cho 7 nên suy ra được + 1 chia hết cho 7.
Vậy đẳng thức (*) đúng với mọi
Khẳng định nào sau đây là đúng?
Câu 6:
Với , ta xét các mệnh đề:
P: “ + 5 chia hết cho 2”;
Q: “ + 5 chia hết cho 3” và
R: “ + 5 chia hết cho 6”.
Số mệnh đề đúng trong các mệnh đề trên là:
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
10 Bài tập Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 1)
48 câu Chủ đề 1: Vectơ trong không gian
về câu hỏi!