Câu hỏi:

19/03/2021 1,433

Với nN*, ta xét các mệnh đề:

P: “7n + 5 chia hết cho 2”;

Q: “7n + 5 chia hết cho 3” và

R: “7n + 5 chia hết cho 6”.

Số mệnh đề đúng trong các mệnh đề trên là:

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Bằng quy nạp toán học ta chứng minh được 7n + 5 chia hết cho 6.

Thật vậy, với  ta có: 7n + 5 =12  6

Giả sử mệnh đề đúng với n = k, nghĩa là 7k + 5 chia hết cho 6, ta chứng minh mệnh đề cũng đúng với n = k + 1, nghĩa là phải chứng minh 7k+1 + 5  chia hết cho 6.

Ta có: 7k+1 + 5 = 7(7k + 5) − 30

Theo giả thiết quy nạp ta có 7k + 5 chia hết cho 6, và 30 chia hết cho 6 nên 7(7k + 5) − 30 cũng chia hết cho 6.

Do đó mệnh đề đúng với n = k + 1.

Vậy 7n + 5 chia hết cho 6 với mọi nN*

Mọi số chia hết cho 6 đều chia hết cho 2 và chia hết cho 3.

Do đó cả 3 mệnh đề đều đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến P(n) đúng với mọi số tự nhiên np (p là một số tự nhiên), ta tiến hành hai bước:

Bước 1, kiểm tra mệnh đề P(n) đúng với n = p

Bước 2, giả thiết mệnh đề P(n) đúng với số tự nhiên bất kỳ n=kp và phải chứng minh rằng nó cũng đúng với n = k + 1

Trong hai bước trên:

Xem đáp án » 19/03/2021 5,435

Câu 2:

Với nN*, hãy rút gọn biểu thức S=1.4+2.7+3.10+...+n(3n+1)

Xem đáp án » 19/03/2021 4,684

Câu 3:

Với mỗi số nguyên dương n, đặt S=12+22+...+n2. Mệnh đề nào dưới đây là đúng

Xem đáp án » 19/03/2021 4,505

Câu 4:

Một học sinh chứng minh mệnh đề ''8n+1 chia hết cho 7, nN*''(*) như sau:

Giả sử (*) đúng với n = k tức là 8k + 1 chia hết cho 7

Ta có: 8k+1 + 1 = 8(8k+1) - 7, kết hợp với giả thiết 8k + 1 chia hết cho 7 nên suy ra được 8k+1 + 1 chia hết cho 7.

Vậy đẳng thức (*) đúng với mọi nN*

Khẳng định nào sau đây là đúng?

Xem đáp án » 19/03/2021 4,009

Câu 5:

Kí hiệu k!=k(k1)...2.1,kN* đặt Sn=1.1!+2.2!+...+n.n!. Mệnh đề nào dưới đây là đúng?

Xem đáp án » 19/03/2021 1,895

Câu 6:

Đối với bài toán chứng minh P(n) đúng với mọi np với p là số tự nhiên cho trước thì ở bước 1 ta cần chứng minh mệnh đề đúng với:

Xem đáp án » 19/03/2021 1,607

Bình luận


Bình luận
Vietjack official store