Câu hỏi:

19/03/2021 4,400 Lưu

Một học sinh chứng minh mệnh đề ''8n+1 chia hết cho 7, nN*''(*) như sau:

Giả sử (*) đúng với n = k tức là 8k + 1 chia hết cho 7

Ta có: 8k+1 + 1 = 8(8k+1) - 7, kết hợp với giả thiết 8k + 1 chia hết cho 7 nên suy ra được 8k+1 + 1 chia hết cho 7.

Vậy đẳng thức (*) đúng với mọi nN*

Khẳng định nào sau đây là đúng?

A. Học sinh trên chứng minh đúng.

B. Học sinh chứng minh sai vì không có giả thiết qui nạp.

C. Học sinh chứng minh sai vì không dùng giả thiết qui nạp.

D. Học sinh không kiểm tra bước 1 (bước cơ sở) của phương pháp qui nạp

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Quan sát lời giải trên ta thấy:

Học sinh thực hiện thiếu bước 1: Kiểm tra n = 1 thì 81 + 1 = 9 không chia hết cho 7 nên mệnh đề đó sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Đối với bài toán chứng minh P(n) đúng với mọi np với p là số tự nhiên cho trước thì:

- Bước 1: Chứng minh P(n) đúng với n = p.

- Bước 2: Với kp là một số nguyên dương tùy ý, giả sử P(n) đúng với n = k, chứng minh P(n) cũng đúng khi n = k + 1.

Từ lý thuyết trên ta thấy cả hai bước trên đều đúng.

Câu 2

A. S=n(n+1)2

B. S=n(n+2)2

C. S=n(n+1)

D. S=2n(n+1)

Lời giải

Đáp án A

Để chọn được S đúng, chúng ta có thể dựa vào một trong ba cách sau đây:

Cách 1: Kiểm tra tính đúng –sai của từng phương án với những giá trị của n.

Với n = 1 thì S = 1.4 = 4 (loại ngay được phương án B và C).

Với n = 2 thì 

S = 1.4 + 2.7 = 18 (loại được phương án D).

Cách 2: Bằng cách tính S trong các trường hợp n = 1, S = 4; n = 2, S = 18; n = 3, S = 48 ta dự đoán được công thức S=n(n+1)2

Cách 3: Ta tính S dựa vào các tổng đã biết kết quả như

Câu 3

A. S=n(n+1)(n+2)6

B. S=n(n+1)(2n+2)3

C. S=n(n+1)(2n+1)6

D. S=n(n+1)(n+2)3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP