Đăng nhập
Đăng ký
3690 lượt thi 10 câu hỏi 25 phút
5013 lượt thi
Thi ngay
4719 lượt thi
4023 lượt thi
3409 lượt thi
4999 lượt thi
4122 lượt thi
4060 lượt thi
3808 lượt thi
2898 lượt thi
5194 lượt thi
Câu 1:
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, AD = 2a, AA' = a. Gọi M là điểm trên đoạn AD với AMMD = 3. Gọi x là độ dài khoảng cách giữa hai đường thẳng AD', B'C và y là độ dài khoảng cách từ M đến mặt phẳng (AB'C). Tính giá trị xy.
A. 5a53
B. a22
C. 3a24
D. 3a22
Câu 2:
Cho hình chóp S.ABCD, đáy là hình thang vuông tại A và B, biết AB = BC = a, AD = 2a, SA = a3 và SA⊥(ABCD). Gọi M và N lần lượt là trung điểm của SB, SA. Tính khoảng cách từ M đến (NCD) theo a.
A. a6622
B. 2a66
C. a6611
D. a6644
Câu 3:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và góc BAD^=600. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Góc giữa mặt phẳng (SAB) và (ABCD) bằng 600. Khoảng cách từ B đến mặt phẳng (SCD) bằng
A. a2114
B. a217
C. 3a714
D. 3a77
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; AB = AD = 2a, DC = a. Điểm I là trung điểm đoạn AD, mặt phẳng (SIB) và (SIC) cùng vuông góc với mặt phẳng (ABCD) . Mặt phẳng (SBC) tạo với mặt phẳng (ABCD) một góc 600. Tính khoảng cách từ D đến (SBC) theo a.
A. 2a155
B. 9a1510
C. 9a1520
D. a155
Câu 5:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a; AD = 2a (a > 0). Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy. Biết mặt phẳng (SAC) hợp với (ABCD) một góc 600. Tính khoảng cách giữa CD và SB.
A. 2a35
B. 2a315
C. a315
D. 3a35
Câu 6:
Cho hình chóp S.ABCD có đáy là hình bình hành với AB = 2a; BC=a2; BD=a6. Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là trọng tâm G của tam giác BCD, biết SG = 2a. Khoảng cách giữa hai đường thẳng AC và SB theo a là:
A. a
B. 2a
C. a2
D. a3
Câu 7:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = 4a, BC = 3a. Gọi I là trung điểm của AB, hai mặt phẳng (SIC) và (SIB) cùng vuông góc với (ABC), góc giữa hai mặt phẳng (SAC) và (ABC) bằng 600. Khoảng cách giữa hai đường thẳng SB và AC theo a là:
A. 12a35
B. 3a35
C. 2a35
D. 5a33
Câu 8:
Cho tứ diện ABCD có DA = DB = DC tam giác ABC vuông tại A, AB = a, AC=a3. Ngoài ra DBC là tam giác vuông. Tính khoảng cách giữa hai đường thẳng AM và CD với M là trung điểm của BC.
A. a217
B. a37
C. a77
D. a177
Câu 9:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = a, SA vuông góc với mặt phẳng (ABC), góc giữa đường thẳng SC và mặt phẳng (ABC) bằng 600. Khoảng cách giữa hai đường thẳng SB và AC.
A. 2a1313
B. 2a7813
C. a1313
D. a7813
Câu 10:
Cho hình chóp S.ABCD có đáy là hình thoi, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết AC = 2a; BD = 4a. Tính theo a khoảng cách giữa hai đường thẳng AD và SC.
A. 4a1391
B. a16591
C. 4a136591
D. a13591
738 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com