Câu hỏi:

08/09/2022 4,373

Từ các chữ số 1; 5; 6; 7 có thể lập được bao nhiêu chữ số tự nhiên có 4 chữ số (không nhất thiết phải khác nhau) ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi số cần tìm có dạng abcd¯ với a,b,c,dA=1, 5, 6, 7.

Vì số cần tìm có 4 chữ số không nhất thiết khác nhau nên:

a được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.

b được chọn từ tập A (có 4  phần tử) nên có 4 cách chọn.

c được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.

d được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.

Như vậy, ta có 4.4.4.4 = 256 số cần tìm.

Chọn đáp án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số cần tìm có dạng abcd¯ với a,b,c,dA=0,1,2,3,4,5.

abcd¯ là số lẻ   d=1,3,5  d có 3 cách chọn.

Khi đó, a có 4 cách chọn (khác 0 và d),.

b có 4 cách chọn và c có 3 cách chọn.

Vậy có tất cả 3.4.4.3 =  144 số cần tìm.

Chọn đáp án C.

Lời giải

Nếu chọn một cái quần thì sẽ có 4 cách.

Nếu chọn một cái áo thì sẽ có 6 cách.

Nếu chọn một cái cà vạt thì sẽ có 3 cách.

Theo qui tắc cộng, ta có 4 + 6 + 3 = 13 cách chọn.

Chọn đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP