Giả sử đường thẳng cắt đồ thị (C) của hàm số tại hai điểm phân biệt E và F. Gọi lần lượt là hệ số góc của các tiếp tuyến với tại E và F. Tìm giá trị nhỏ nhất minS của biểu thức .
Quảng cáo
Trả lời:
Đáp án A.
Phương trình hoành độ giao điểm của đồ thị (C) với đường thẳng đã cho là
(do không là nghiệm)
(*).
Đồ thị (C) với đường thẳng đã cho cắt nhau tại hai điểm phân biệt khi và chỉ khi (*) có hai nghiệm phân biệt (nghiệm đúng với mọi m).
Giả sử thì là hai nghiệm của (*).
Suy ra .
Do đó .
Ta có
nên .
Suy ra . Dấu bằng xảy ra khi hoặc . Vậy S đạt giá trị nhỏ nhất bằng ‒1.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D.
Ta có .
Do đó
Vậy phương án sai là D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.