Câu hỏi:
14/08/2020 192Xét các tam giác ABC nhọn nội tiếp đường tròn (O;R). Gọi và lần lượt là thể tích của các khối tròn xoay sinh ra khi quay tam giác OCA quanh trung trực của đoạn thẳng CA, quay tam giác OAB quanh trung trực của đoạn thẳng AB và quay tam giác OBC quanh trung trực của đoạn thẳng BC. Tính theo R khi biểu thức đạt giá trị lớn nhất.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án B.
Đặt .
Quay tam giác OCA quanh trung trực của đoạn thẳng CA thì khối tròn xoay sinh ra là khối nón có chiều cao và bán kính đáy nên ta có .
Tương tự, ta có
.
Bằng việc khảo sát hàm số trên khoảng hoặc dựa vào bất đẳng thức Cô-si
.
Ta được . Suy ra .
Dấu bằng xảy ra khi và chỉ khi .
Vậy đạt giá trị lớn nhất bằng khi .
Khi đó tam giác ABC cân tại A và có .
Gọi AH là đường cao của tam giác ABC thì . Từ đó suy ra . Do đó và .
Suy ra .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Giả sử một hình thang cong giới hạn bởi đồ thị hàm số y=f(x), trục Ox và hai đường thẳng x=a và x=b (a<b) quay xung quanh trục Ox tạo thành một khối tròn xoay. Viết công thức tính thể tích V của khối tròn xoay đó.
Câu 3:
Cho khối trụ có bán kính đáy bằng r và chiều cao bằng h. Cắt khối trụ bằng mặt phẳng (P) song song với trục và cách trục một khoảng bằng . Mặt phẳng (P) chia khối trụ thành hai phần. Gọi là thể tích của phần chứa tâm của đường tròn đáy và thể tích của phần không chứa tâm của đường tròn đáy, tính tỉ số .
Câu 6:
Trong không gian với hệ tọa độ Oxyz, cho hình lăng trụ đứng có , , và , trong đó là các số thực dương và thỏa mãn . Khi khoảng cách giữa hai đường thẳng AC' và B'C lớn nhất thì bán kính R của mặt cầu ngoại tiếp hình lăng trụ bằng bao nhiêu?
Câu 7:
Xét các số phức z thỏa mãn điều kiện . Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của . Tính tổng bình phương của M và m.
về câu hỏi!