Câu hỏi:
21/08/2020 290Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 4. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm của các cạnh SD, CD, BC. Thể tích khối chóp S.ABPN là x, thể tích khối tứ diện CMNP là y. Giá trị của x,y thỏa mãn các bất đẳng thức nào dưới đây?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án C
Gọi H là trung điểm của AB. Do đều nên và .
Mà nên .
Từ .
Ta có (đvdt).
(đvdt) .
Lại có (đvdt)
(đvdt) .
* Phương án A:
* Phương án B:
* Phương án C:
* Phương án D:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cắt một miếng giấy hình vuông và xếp thành một hình chóp tứ giác đều (hình vẽ). Biết cạnh hình vuông bằng 20 (cm), OM = x (cm). Tìm x để hình chóp đều ấy có thể tích lớn nhất.
Câu 2:
Cho tam giác ABC có A(1;2),B(5;4),C(3;-2). Gọi A',B',C' lần lượt là ảnh của A, B, C qua phép vị tự tâm I(1;5), tỉ số k = -3. Bán kính đường tròn ngoại tiếp tam giác A'B'C' bằng
Câu 3:
Gọi E là tập hợp các số tự nhiên có 3 chữ số đôi một khác nhau lập được từ các chữ số 1, 2, 3, 4, 7. Chọn ngẫu nhiên một phần tử của E. Tính xác suất để số được chọn chia hết cho 3
Câu 4:
Gọi A là tập hợp tất cả các số tự nhiên có 5 chữ số. Chọn ngẫu nhiên 1 số từ tập A. Tính xác suất để số được chọn chia hết cho 7 và chữ số hàng đơn vị bằng 1
Câu 6:
Cho x, y là các số thực dương thỏa mãn điều kiện . Tính giá trị nhỏ nhất của biểu thức
về câu hỏi!