Câu hỏi:

17/08/2020 1,369

Chất điểm chuyển động theo một đường thẳng sau t giây đạt được vận tốc v=t2.e5 (m/s). Tính quãng đường nó đi được trong t giây đầu tiên

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B.

Gọi St  là quãng đường mà chất điểm đi được sau t giây đầu tiên. Khi đó St  là nguyên hàm của vận tốc vt=t2.et  . Hay St=vtdt=t2.etdt  .

Đặt  u=t2dv=etdtdu=2tdtv=etSt=t2+et+2t.etdt

Đặt  u1=tdv1=etdtdu1=dtv1=ett.etdt=t.et+etdt=t.etet+C1

Vậy

St=t2.et+2t.etet+C1=ett2+2t+2+C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A.

Có tất cả 15 điểm được tô màu gồm 4 đỉnh của tứ diện, 6 trung điểm của 6 cạnh, 4 trọng tâm của 4 mặt bên và 1 trọng tâm của tứ diện.

Không gian mẫu là “Chọn ngẫu nhiên 4 trong số 15 điểm đã tô màu”. Số phần tử của không gian mẫu là nΩ=C154  .

Gọi A là biến cố “4 điểm được chọn đồng phẳng”. Suy ra  là biến cố “4 điểm được chọn là 4 đỉnh của một hình tứ diện”. Để xác định số kết quả thuận lợi cho biến cố A ta xét các trường hợp sau:

a. 4 điểm cùng thuộc “một mặt bên của tứ diện”

Một mặt bên có 7 điểm được tô màu nên số cách chọn 4 điểm (đồng phẳng) trên một mặt bên là C74  (cách).

Có tất cả 4 mặt bên nên số cách chọn thỏa mãn trường hợp a. là 4.C74  (cách).

b. 4 điểm cùng thuộc mặt phẳng “chứa 1 cạnh của tứ diện và trung điểm của cạnh đối diện:.

Mặt phẳng đó có 7 điểm được tô màu nên số cách chọn 4 điểm (đồng phẳng) trên mỗi mặt là C74  (cách).

Hình tứ diện có 6 cạnh nên có tất cả 6 mặt như thế. Số cách chọn 4 điểm thỏa mãn trường hợp b. là 6C74  (cách).

c. 4 điểm cùng thuộc mặt phẳng “chứa 1 đỉnh và đường trung bình của tam giác đối diện đỉnh đó”.

Mặt phẳng đó có 5 điểm được tô màu nên số cách chọn 4 điểm (đồng phẳng) trên mỗi mặt là C54  (cách).

Do mỗi mặt bên là một tam giác có 3 đường trung bình, nên mỗi đỉnh có tương ứng 3 mặt phẳng như thế (chứa đỉnh và đường trung bình). Mà tứ diện có 4 đỉnh nên có tất cả  3.4=12 mặt phẳng ở trường hợp c.

Vậy số cách chọn thỏa mãn trường hợp c. là  12C54 (cách).

d. 4 điểm cùng thuộc mặt phẳng “chứa 2 đường nối 2 trung điểm của các cạnh đối diện”.

Có 3 đường nối 2 trung điểm của các cạnh đối diện. Số mặt phẳng được tạo thành từ 2 trong 3 đường đó là  C32(mặt phẳng).

Mỗi mặt phẳng như thế có 5 điểm được tô màu nên số cách chọn 4 điểm (đồng phẳng) là  C54(cách).

Vậy số cách chọn thỏa mãn trường hợp d. là C32.C54  (cách).

Số kết quả thuận lợi cho biến cố A là nA=4C74+6C74+12C54+C32.C54=425  .

Vậy xác suất cần tính là

PA¯=1PA=1nAnΩ=1425C154=188173

Câu 2

Trong các hàm số sau, hàm số nào là hàm số chẵn?

Lời giải

Đáp án A.

Cách 1: Tư duy tự luận

Các hàm số đã cho đều có tập xác định là D=  , khi đó xx .

Với A:  yx=sin2016x+cos2017x=sin2016x+cos2017x=yx

Suy ra hàm số  y=sin2016x+cos2017xchẵn trên . Chọn A.

 Với B: yx=2016cosx+2017sinx=2016cosx2017sinx±yx  

Suy ra hàm số y=2016cosx+2017sinx  không chẵn, không lẻ trên . Loại B.

Với C:yx=cot2015x2016sinx=cot2015x+2016sinx=yx

 Suy ra hàm số y=cot2015x2016sinx  lẻ trên R  . Loại C.

 Với D:  yx=tan2016x+cot2017x=tan2016cot2017x=yx

Suy ra hàm số  y=tan2016x+cot2017x lẻ trên R  . Loại D.

Cách 2: Sử dụng máy tính cầm tay

Các hàm số đều có tập xác định là R nên xx .

* Với A: Dùng TABLE, nhập hai hàm số  fX=sin2016X+cos2017X gX=sin2016X+cos2017X

Câu 3

Tính I=limx12xx+3x21

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hàm số y=x2x+1. Chọn khẳng định đúng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay