Câu hỏi:
17/08/2020 389Trong không gian với hệ tọa độ Oxyz, biết rằng tập hợp các điểm sao cho là một hình đa diện. Tính thể tích V của khối đa diện đó
Quảng cáo
Trả lời:
Đáp án C.
Ta có . Suy ra tập hợp các điểm là 8 mặt chắn có phương trình: ;
Các mặt chắn này cắt các trục Ox, Oy, Oz tại các điểm , .
Từ đó, tập hợp các điểm thỏa mãn là các mặt bên của bát diện đều (hình vẽ) cạnh bằng .
Thể tích khối bát diện đều là (đvtt).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A.
Có tất cả 15 điểm được tô màu gồm 4 đỉnh của tứ diện, 6 trung điểm của 6 cạnh, 4 trọng tâm của 4 mặt bên và 1 trọng tâm của tứ diện.
Không gian mẫu là “Chọn ngẫu nhiên 4 trong số 15 điểm đã tô màu”. Số phần tử của không gian mẫu là .
Gọi A là biến cố “4 điểm được chọn đồng phẳng”. Suy ra là biến cố “4 điểm được chọn là 4 đỉnh của một hình tứ diện”. Để xác định số kết quả thuận lợi cho biến cố A ta xét các trường hợp sau:
a. 4 điểm cùng thuộc “một mặt bên của tứ diện”
Một mặt bên có 7 điểm được tô màu nên số cách chọn 4 điểm (đồng phẳng) trên một mặt bên là (cách).
Có tất cả 4 mặt bên nên số cách chọn thỏa mãn trường hợp a. là (cách).
b. 4 điểm cùng thuộc mặt phẳng “chứa 1 cạnh của tứ diện và trung điểm của cạnh đối diện:.
Mặt phẳng đó có 7 điểm được tô màu nên số cách chọn 4 điểm (đồng phẳng) trên mỗi mặt là (cách).
Hình tứ diện có 6 cạnh nên có tất cả 6 mặt như thế. Số cách chọn 4 điểm thỏa mãn trường hợp b. là (cách).
c. 4 điểm cùng thuộc mặt phẳng “chứa 1 đỉnh và đường trung bình của tam giác đối diện đỉnh đó”.
Mặt phẳng đó có 5 điểm được tô màu nên số cách chọn 4 điểm (đồng phẳng) trên mỗi mặt là (cách).
Do mỗi mặt bên là một tam giác có 3 đường trung bình, nên mỗi đỉnh có tương ứng 3 mặt phẳng như thế (chứa đỉnh và đường trung bình). Mà tứ diện có 4 đỉnh nên có tất cả mặt phẳng ở trường hợp c.
Vậy số cách chọn thỏa mãn trường hợp c. là (cách).
d. 4 điểm cùng thuộc mặt phẳng “chứa 2 đường nối 2 trung điểm của các cạnh đối diện”.
Có 3 đường nối 2 trung điểm của các cạnh đối diện. Số mặt phẳng được tạo thành từ 2 trong 3 đường đó là (mặt phẳng).
Mỗi mặt phẳng như thế có 5 điểm được tô màu nên số cách chọn 4 điểm (đồng phẳng) là (cách).
Vậy số cách chọn thỏa mãn trường hợp d. là (cách).
Số kết quả thuận lợi cho biến cố A là .
Vậy xác suất cần tính là
Lời giải
Đáp án A.
Cách 1: Tư duy tự luận
Các hàm số đã cho đều có tập xác định là , khi đó .
Với A:
Suy ra hàm số chẵn trên . Chọn A.
Với B:
Suy ra hàm số không chẵn, không lẻ trên . Loại B.
Với C:
Suy ra hàm số lẻ trên R . Loại C.
Với D:
Suy ra hàm số lẻ trên R . Loại D.
Cách 2: Sử dụng máy tính cầm tay
Các hàm số đều có tập xác định là R nên .
* Với A: Dùng TABLE, nhập hai hàm số và
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải