Đội thanh niên xung kích của một trường phổ thông gồm có 12 học sinh trong đó có 5 học sinh lớp A, 4 học sinh lớp B và 3 học sinh lớp C. Cần chọn 4 học sinh đi làm nhiệm vụ sao cho 4 học sinh này thuộc không quá hai trong ba lớp trên. Hỏi có bao nhiêu cách chọn như vậy?
A. 366
B. 2196.
C. 225.
D. 446.
Quảng cáo
Trả lời:
Đáp án C
TH1: 4 học sinh được chọn thuộc một lớp:
+ Lớp A có cách chọn.
+ Lớp B có cách chọn.
Trường hợp này có: 6 cách chọn.
TH2: 4 học sinh được chọn thuộc 2 lớp:
+ Lớp A và B: có .
+ Lớp B và C : có
+ Lớp C và A: có
Trường hợp này có 219 cách chọn.
Vậy có 225 cách chọn thỏa yêu cầu bài toán.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Lời giải
Đáp án A
Ta có .
Do hàm số có hệ số nên đồ thị hàm số có dạng N, suy ra là điểm cực tiểu của hàm số .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. 126720
B. 213013
C. 130272
D. 130127
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. Hai mặt phẳng có một điểm chung thì chúng còn vô số điểm chung khác nữa.
B. Hai đường thẳng không song song, không cắt nhau thì chéo nhau
C. Nếu ba điểm phân biệt cùng thuộc hai mặt phẳng thì chúng thẳng hàng.
D. Không có mặt phẳng nào chứa cả hai đường thẳng a và b thì ta nói ai và b chéo nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.