Câu hỏi:

18/08/2020 187 Lưu

Cho tứ diện ABCD có ADABC,ABC là tam giác vuông tại B. Biết BC=a, AB= a3,AD=3a. Quay các tam giác ABC và ABD xung quanh đường thẳng AB ta được 2 khối tròn xoay. Thể tích phần chung của 2 khối tròn xoay đó bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Vì hai mặt phẳng (ABC), (ABD) vuông góc với nhau nên bài toán trở thành “Tính thể tích khối tròn xoay khi quay tam giác HAB quanh AB với ABCD là hình thang vuông tại A,B” như hình bên. Hai tam giác BHC và DHA đồng dạng BHDH=HCHA=BCAD=13.

BD=AD2+AB2=2a3;AC=AB2+CB2=2a

Suy ra AH=34AC=34.2a=3a2 BH=14BD=14.2a3=a32.

Diện tích tam giác ABH là:

SΔABH=12.AH.BH=12.3a2.a32=3a238=12.dH;BC.BCdH;BC=2.3a238.a3=3a4.

Vậy thể tích khối tròn xoay cần tính là:

V=13π3a42.a3=33πa216.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Ta có: P=a3b244a12b63=a3b2a6b33=a3b2a2b=ab.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP