Câu hỏi:

18/08/2020 227 Lưu

Cho các số thực x1,x2,x3,x4 thỏa mãn 0<x1<x2<x3<x4 và hàm số y=fx. Biết hàm số y=f'x có đồ thị như hình vẽ. Gọi Mm lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn 0;x4. Đáp áp nào sau đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Dựa vào đồ thị hàm số y=f'x , ta có nhận xét:

 Hàm số  y=f'x đổi dấu từ    sang + khi qua x=x1 .

Hàm số  y=f'x đổi dấu từ + sang – khi qua x=x2  .

 Hàm số y=f'x  đổi dấu từ  – sang + khi qua x=x3 .

Từ đó ta có bảng biến thiên của hàm số y=fx  trên đoạn 0;x4  như sau:

Sử dụng bảng biến thiên ta tìm được max0;x4[fx=maxf0,fx2,fx4min0;x4fx=minfx1,fx3 .

Quan sát đồ thị, dùng phương pháp tích phân để tính diện tích, ta có:

x1x2f'xdx<x2x30f'xdxfx3<fx1min0;x4fx=fx3

 

Tương tự, ta có

0x10f'xdx>x1x2f'xdxf0>fx2x2x30f'xdx>x3x4f'xdxfx2>fx4

f0>fx2>fx4max0;x4fx=fx3

Vậy max0;x4fx=f0;min0;x4fx=fx3

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

sinx=cosxcosπ2x=cosxx=π2x+k2πx=xπ2+k2πx=π4+kπ,k

Lời giải

Đáp án A

y'=3x26x Ta có y'=0x=0x=2 .

Do hàm số có hệ số  nên đồ thị hàm số có dạng N, suy ra x=2  là điểm cực tiểu của hàm yCT=f2=0 số .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP