Câu hỏi:

21/08/2020 153 Lưu

Tìm tổng các giá trị nguyên của tham số m để phương trình 4sinx+21+sinx=mcó tổng các nghiệm trong khoảng 0;π bằng π.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Điều kiện x 

Đặt t=2sinx . Phương trình đã cho trở thành  t2+2t=m(*)

sinx=sinαx=α+2kπx=πα+k2π nên để phương trình đã cho có tổng các nghiệm trong khoảng 0;π  bằng π  thì phương trình (*) phải có đúng một nghiệm t1;2 sinx0;1 thì    2sinx1;2

Xét hàm số ft=t2+2t  có bảng biến thiên

Suy ra để phương trình (*) có đúng một nghiệm t1;2 thì m3;8 .Vậy tổng các giá trị nguyên của m thỏa mãn yêu cầu bài toán là 4+5+6+7=22

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

AB=2;4;1,AC=3;1;2,AD=2;0;4,AB,AC=7;7;14

VABCD=16AB,AC.AD=167.2+7.0+14.4=7

Lời giải

Đáp án B

Gọi H là chân đường vuông góc hạ từ S xuống mặt phẳng (ABC).

Kẻ HM, HN, HP lần lượt vuông góc với AB, BC, CA trong mặt phẳng (ABC).

Sử dụng tính chất ba đường cvuoong góc ta dễ chứng minh được SM, SN, SP lần lượt vuông góc với AB, BC, CA. Từ đây suy ra SMH^,SNH^,SPH^  là các gốc tạo bởi mặt bên và mặt đáy (ABC). Do đó  SMH^=SNH^=SPH^=600 .

Suy ra HM=HN=HP=SH.cot600  nên H là tâm đường tròn nội tiếp tam giác ABC.

Sử dụng công thức Hê rông ta tính được SABC=66a2

Và ta tính được bán kính đường trọn nội tiếp  r=Sp=66a29a=26a3

Ta cũng cóSH=r.tan600=26a3.3=22a

Vậy VSABC=13.SH.SABC=13.22a.66a2=83a3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP