Câu hỏi:

22/08/2020 181 Lưu

Giả sử a, b là các số thực sao cho x3+y3=a.103x+b.102x đúng với mọi số thực dương x, y, z thỏa mãn logx+y=z và logx2+y2=z+1. Giá trị của a+b bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D.

Ta có:

logx+y=zlogx2+y2=z+1x+y=10z+x2+y2=10z+1=10.10zx2+y2=10x+y

Khi đó:

x3+y3=a.103z+b.102zx+yx2xy+y2=a.10z3+b.10z2x+yx2xy+y2=a.x+y3+b.x+y2x2xy+y2=a.x+y2+b.x+yx2xy+y2=a.x2+2xy+y2+b10.x2+y2x2+y2xy=a+b10.x2+y2+2a.xy

Đồng nhất hệ số, ta được:

a+b10=12a=1a=12b=15.

Vậy a+b=292.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A.

Ta có: D=0;+. Đạo hàm:

y'=2xlnx+x2.1x=2xlnx+x=0x=0  loai2lnx+1=0x=1e.

Do y"=2lnx+3y"1e>0 nên hàm số đạt cực tiểu tại yCT=y1e=12e.

Khi đó yCT=y1e=12e.

Lời giải

Đáp án D.

Đặt t=log3xt23t+2m7=0

PT có 2 nghiệm khi Δ=942m7=378m>0 PT có 2 nghiệm t1;t2log3x1=t1log3x2=t2x1=3t1x2=3t2

Khi đó theo định lý Viet ta có: t1+t2=3t1t2=2m7

Do:

x1+3x2+3=72x1x2+3x1+x2=633t1.3t2+33t1+3t2=633t1+t2+33t1+3t2=633t1+3t2=1233t2+3t2=12

Đặt:

u=3t227u+u=12u=3u=9t2=1t1=2t2=2t1=1t1t2=2m=92t/m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP