Câu hỏi:
27/08/2020 357Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Đồ thị của hàm số y = f(x) có hai tiệm cận ngang ó Tập xác định của y = f(x) chứa khoảng âm vô cực và dương vô cực và a,b R, ab:
Cách giải:
Điều kiện xác định:
Đồ thị hàm số có 2 tiệm cận ngang => Tập xác định D phải chứa khoảng âm vô cực và dương vô cực
Ta tìm m để tồn tại giá trị của a R
TH1: . Khi đó
R
TH2: . Khi đó
R
R,
+) Giải phương trình:
Vậy, với mọi số nguyên hàm số
luôn có 2 tiệm cận ngang.
Số giá trị nguyên của m thỏa mãn là: 2019 số.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án B
Phương pháp:
- Gắn hệ trục tọa độ Oxy, xác định phương trình hàm số bậc ba.
- Ứng dụng tích phân vào tính thể tích.
Cách giải:
Gắn hệ trục tọa độ Oxy như hình vẽ.
Gọi phương trình của đường sinh là:
Theo đề bài, ta có: (C) có điểm cực đại (0;3), điểm cực tiểu là (2;1)
Từ (1),(2),(3) và (4)
Thể tích đã cho vào:
Thể tích 1 viên bi là
Cần số viên bi: (viên)
Lời giải
Đáp án A
Phương pháp:
- Sử dụng phương pháp tọa độ hóa.
- Công thức tính khoảng cách giữa hai đường thẳng chéo nhau:
Cho có VTCP và qua M; ' có VTCP và qua M’
Cách giải:
Gắn hệ trục tọa độ như hình vẽ, trong đó:
A'(0;0;0), B'(0;a;0), C'(a;a;0), D'(a;0;0)
A(0;0;a), B(0;a;a), C(a;a;a); D(a;0;a), M(a/2;a;a)
Đường thẳng AM có VTCP và qua A(0;0;a)
Đường thẳng DB’ có VTCP và qua D(a;0;a)
Khoảng cách giữa hai đường thẳng AM và DB’:
Ta có:
Vây, khoảng cách giữa AM và DB’ là
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.