Câu hỏi:
27/08/2020 292Cho hàm số y = f(x) liên tục trên R\{1;2} và có bảng biến thiên như sau
Phương trình có bao nhiêu nghiệm trên
Quảng cáo
Trả lời:
Đáp án A
*) Phương trình có nghiệm trên
* Xét hàm số
k Z
Mà
Bảng biến thiên
+) Nếu điệu tăng từ 1 đến 2: Phương trình
có 2 nghiệm phân biệt trên đoạn này ( Nghiệm khác )
+) Nếu thì đơn điệu giảm từ 2 xuống 2 : Phương trình
có 1 nghiệm duy nhất trên đoạn này ( Nghiệm khác )
Vậy, trên phương trình
có tất cả 3 nghiệm
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án B
Phương pháp:
- Gắn hệ trục tọa độ Oxy, xác định phương trình hàm số bậc ba.
- Ứng dụng tích phân vào tính thể tích.
Cách giải:
Gắn hệ trục tọa độ Oxy như hình vẽ.
Gọi phương trình của đường sinh là:
Theo đề bài, ta có: (C) có điểm cực đại (0;3), điểm cực tiểu là (2;1)
Từ (1),(2),(3) và (4)
Thể tích đã cho vào:
Thể tích 1 viên bi là
Cần số viên bi: (viên)
Lời giải
Đáp án A
Phương pháp:
- Sử dụng phương pháp tọa độ hóa.
- Công thức tính khoảng cách giữa hai đường thẳng chéo nhau:
Cho có VTCP và qua M; ' có VTCP và qua M’
Cách giải:
Gắn hệ trục tọa độ như hình vẽ, trong đó:
A'(0;0;0), B'(0;a;0), C'(a;a;0), D'(a;0;0)
A(0;0;a), B(0;a;a), C(a;a;a); D(a;0;a), M(a/2;a;a)
Đường thẳng AM có VTCP và qua A(0;0;a)
Đường thẳng DB’ có VTCP và qua D(a;0;a)
Khoảng cách giữa hai đường thẳng AM và DB’:
Ta có:
Vây, khoảng cách giữa AM và DB’ là
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.