Câu hỏi:

28/08/2020 209

Cho biết 12ln9x2dx=aln5+bln2+c với a,b,c là các số nguyên. Tính S=a+b+c.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

u=ln9x2du=2x9x2dxdv=dxv=x

12ln9x2dx=x.ln9x212122x29x2dx=x.ln9x212+122x29x2dx=x.ln9x212+122+189x2dx

=x.ln9x2122x12+12313x+13+xdx=x.ln9x2122x12+3ln3+x3x12=5ln56ln22.

Vậy S=562=3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Viết phương trình mặt phẳng (ABC) ta có

AB=2;2;3

AC=4;0;6

n=AB,AC=12;24;8.

Vậy phương trình mặt phẳng (ABC) là

3x2+6y32z1=0

3x+6y2z22=0.

Khoảng cách từ D đến mặt phẳng (ABC) là

dD,ABC=3.3+6.222232+62+22=2749=277.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP