Câu hỏi:

11/09/2020 1,568

Giả sử phương trình 2x24mx1=0 (với m là tham số) có hai nghiệm x1, x2. Tìm giá trị nhỏ nhất của biểu thức T=x1x2

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương trình 2x2-4mx-1=0 có '=4m2+2>0 nên phương trình có hai nghiệm phân biệt x1, x2 với S=x1+x2=2mP=x1x2=-12

Ta có: T2=x1-x22=S2-4P=4m2+22T2

Dấu bằng xảy ra khi m = 0.

Vậy minT=2

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Điều kiện: 4xx+20x2;4

x22x8=44xx+2x22x8=4x22x8

Đặt t=x22x8,t0

t2=x22x8x22x8=t2

1t2=4tt2+4t=0t=0  (n)t=4  (l)x22x8=0

x22x8=0x=2  (TM)x=4  (TM)

Vậy phương trình đã cho có hai nghiệm

Đáp án cần chọn là: D

Lời giải

Điều kiện xác định x2+5x+100xR

Khi đó phương trình x2+5x+10+2x2+5x+108=0

(x2+5x+102)(x2+5x+10+4)=0

x2+5x+10=2x2+5x+10=4x2+5x+10=2x2+5x+6=0x=3x=2

Vậy x12+x22=22+33=13

Đáp án cần chọn là: B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP