Câu hỏi:
02/10/2020 216Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số trục tung, trục hoành. Giá trị của k để đường thẳng d đi qua A(0;4) có hệ số góc k chia (H) thành 2 phần có diện tích bằng nhau là
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án A
Phương pháp: Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số y = f(x), trục hoành và hai đường thẳng x = a; x = b được tính theo công thức :
Cách giải: Phương trình đường thẳng d đi qua A(0;4) có hệ số góc k
Cho . Vậy, d cắt Ox tại điểm
Giao điểm của và trục hoành: Cho y = 0 => x = 2
=>Để d chia (H) thành 2 phần thì
Vì d chia (H) thành 2 phần có diện tích bằng nhau
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho 6 chữ số 2,3,4,5,6,7 số các số gồm 3 chữ số được lập từ 6 chữ số đó là
Câu 3:
Gọi M và m lần lượt là GTLN và GTNN của hàm số trên đoạn [1;2]. Tỉ số bằng
Câu 5:
Cho hàm sốf (x) có đạo hàm với mọi x và thỏa mãn f(2x) = 4cosx.f(x) – 2x. Giá trị f’(0) là
Câu 6:
Cho hàm số y = f(x) có f’ (x) liên tục trên nửa khoảng [0;+∞) thỏa mãn biết 3f(x) + f(x) = . Giá trị f(0) = . Giá trị f bằng
Câu 7:
Cho lăng trụ ABC.A’B’C’có AB = 2a, BC = 2a, góc A’B’C’ = . Hình chiếu vuông góc của A trên mặt phẳng (A’B’C’) trung với điểm của A’B’. Góc giữa đường thẳng AC’ và mặt phẳng (A’B’C’) bằng . Gọi α là góc giữa hai mặt phẳng (BCC’B’) và (ABC). Khi đó, tan α có giá trị là:
về câu hỏi!