Câu hỏi:

02/10/2020 584

Cho hàm số y = f(x) có đạo hàm liên tục trên R đồ thị hàm số y = f’(x)  như hình vẽ.

Biết f(2) = –6, f(–4) = –10 và hàm số g(x) = f(x)+x22, g(x) có ba điểm cực trị.

Phương trình g(x) = 0?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp: Lập bảng biến thiên của g(x) và đánh giá số giao điểm của đồ thị hàm số y = g(x) và trục hoành.

Cách giải: 

Xét giao điểm của đồ  thị  hàm sốy = f’(x) và đường thẳng y = -x ta thấy, hai đồ  thị  cắt nhau tại ba điểm có hoành độ là: -2;2;4 tương ứng với 3 điểm cực trị của y = g(x).

Bảng biến thiên:

Dựa vào bảng biến thiên ta thấy  => phương trình g(x) = 0 không có nghiệm

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Phương pháp: Gọi số cần tìm là abc¯a,b,c2;3;4;5;6;7, chọn lần lượt các chữ số a, b, c sau đó áp dụng quy tắc nhân.

Cách giải: Gọi chữ số lập thành là abc¯a,b,c2;3;4;5;6;7.

Khi đó : a có 6 sự lựa chọn, b có 6 sự lựa chọn, c có 6 sự lựa chọn. => Số các số gồm 3 chữ số được lập từ 6 chữ số đó là : 63=216

Câu 2

Phương trình x3-12x+m-2=0 có ba nghiệm phân biệt với m thuộc khoảng

Lời giải

Đáp án A

Phương pháp: Sử dụng sự tương giao giữa hai đồ thị hàm số để đánh giá số nghiệm của phương trình.

Cách giải: 

Số nghiệm của phương trình (*) bằng số giao điểm của đồ thị hàm số  và đường thẳng 

Xét  có 

Bảng biến thiên:

Khi đó,  cắt  tại 3 điểm phân biệt 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP