Câu hỏi:

13/07/2024 11,937

Cho a và b là hai số tự nhiên. Biết a chia cho 5 dư 1; b chia cho 5 dư 4. Chứng minh ab + 1 chia hết cho 5.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì a chia 5 dư 1 nên đặt a = 5x + 1 (x Î N); b chia 5 dư 4 nên đặt b = 5y + 4(y Î N).

Ta có a.b + 1 = (5x + 1)(5y + 4) + 1 = 25xy + 20x + 5y + 5.

Þ ab + 1 = 5(5xy + 4x + y + 1)  5 (đpcm).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm ba số tự nhiên liên tiếp, biết tích của hai số sau lớn hơn tích của hai số đầu là 52.

Xem đáp án » 13/07/2024 3,876

Câu 2:

Nhân các đa thức sau:

a) (x + 3)(x - 4);

b) (x - 4)(x2 + 4x +16);

c) (mn2 - 1)(m2n + 5);

d) 4x12x+12(4x2+1).

Xem đáp án » 13/07/2024 3,737

Câu 3:

Chứng minh 2n2(n +1) - 2n(n2 + n - 3) chia hết cho 6 với mọi số nguyên n.

Xem đáp án » 13/07/2024 2,677

Câu 4:

Chứng minh n(3-2n) - (n - l)(l + 4n)-l chia hết cho 6 với mọi số nguyên n.

Xem đáp án » 13/07/2024 2,151

Câu 5:

Cho a và b là hai số tự nhiên thoả mãn (a + 3) và (b + 4) cùng chia hết cho 5. Chứng minh a2 + b2 cũng chia hết cho 5.

Xem đáp án » 16/11/2020 1,972

Câu 6:

Cho a và b là hai số tự nhiên và b > a. Biết a chia cho chia cho 4 3. Chứng minh b2 - a2 chia hết cho 4.

Xem đáp án » 13/07/2024 1,912
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua