Câu hỏi:

13/07/2024 11,301

Cho a và b là hai số tự nhiên. Biết a chia cho 5 dư 1; b chia cho 5 dư 4. Chứng minh ab + 1 chia hết cho 5.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì a chia 5 dư 1 nên đặt a = 5x + 1 (x Î N); b chia 5 dư 4 nên đặt b = 5y + 4(y Î N).

Ta có a.b + 1 = (5x + 1)(5y + 4) + 1 = 25xy + 20x + 5y + 5.

Þ ab + 1 = 5(5xy + 4x + y + 1)  5 (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm ba số tự nhiên liên tiếp, biết tích của hai số sau lớn hơn tích của hai số đầu là 52.

Xem đáp án » 13/07/2024 3,595

Câu 2:

Nhân các đa thức sau:

a) (x + 3)(x - 4);

b) (x - 4)(x2 + 4x +16);

c) (mn2 - 1)(m2n + 5);

d) 4x12x+12(4x2+1).

Xem đáp án » 13/07/2024 3,524

Câu 3:

Chứng minh 2n2(n +1) - 2n(n2 + n - 3) chia hết cho 6 với mọi số nguyên n.

Xem đáp án » 13/07/2024 2,442

Câu 4:

Chứng minh n(3-2n) - (n - l)(l + 4n)-l chia hết cho 6 với mọi số nguyên n.

Xem đáp án » 13/07/2024 1,907

Câu 5:

Cho a và b là hai số tự nhiên thoả mãn (a + 3) và (b + 4) cùng chia hết cho 5. Chứng minh a2 + b2 cũng chia hết cho 5.

Xem đáp án » 16/11/2020 1,867

Câu 6:

Cho a và b là hai số tự nhiên và b > a. Biết a chia cho chia cho 4 3. Chứng minh b2 - a2 chia hết cho 4.

Xem đáp án » 13/07/2024 1,788

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL