Câu hỏi:

12/07/2024 1,431

Cho tam giác AOB có AB=18cm,OA=12cm,OB=9cm. Trên tia đối của tia OB lấy điểm D sao cho OD=3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC. Tính:

a) Độ dài OC, CD;

b) Tỉ số FDFA

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Từ DC//AB, áp dụng hệ quả định lý Ta-let chứng minh được: OC = 4cm và DC =6cm.

b) Áp dụng hệ quả Định lý Ta-lét cho tam giác AFB tính được FDFA = DCAB = 13

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC, điểm I thuộc cạnh AB, điểm K thuộc cạnh AC. Kẻ IM song song với BK (M thuộc AC), kẻ KN song song với CI (N thuộc AB).Chứng minh MN song song với BC

Xem đáp án » 12/07/2024 17,396

Câu 2:

Cho tam giác ABC, điểm I nằm trong tam giác, các tia AI, BI, CI cắt các cạnh BC, AC, AB theo thứ tự ở D, E, F. Qua A kẻ đường thẳng song song với BC cắt tia CI tại H và cắt tia BI tại K. Chứng minh:

a) AKBD=HADC;

b) AFBF+AECE=AIID.

Xem đáp án » 12/07/2024 16,745

Câu 3:

Cho hình thang ABCD (AB||CD). Gọi trung điểm của các đường chéo AC và BD là M và N. Chứng minh: MN, AB và CD song song với nhau

Xem đáp án » 12/07/2024 15,783

Câu 4:

Cho hình thang ABCD có hai đáy AB và CD. Gọi M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC.

a) Chứng minh EF song song với AB.

b) Đường thẳng EF cắt AD, BC lần lượt tại H và N. Chứng minh: HE = EF = FN.

Xem đáp án » 12/07/2024 13,106

Câu 5:

Cho tam giác ABC có điểm M trên cạnh BC sao cho BC = 4cm. Trên cạnh AC lấy điểm N sao cho CNAN = 13 Chứng minh MN song song với AB

Xem đáp án » 12/07/2024 11,236

Câu 6:

Cho tam giác ABC, đường trung tuyến AM, điểm I thuộc đoạn AM. Gọi E là giao điểm của BI và AC, F là giao điểm của CI và AB. Chứng minh EF song song với BC.

Xem đáp án » 12/07/2024 5,011

Câu 7:

Cho hình thang ABCD (AB||CD, AB<CD). Gọi trung điểm của đường chéo BD là M. Qua M kẻ đường thẳng song song với DC cắt AC tại N. Chứng minh:

a) N là trung điểm của AC;

b) MN=CDAB2

Xem đáp án » 12/07/2024 4,543
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua