Câu hỏi:

13/07/2024 2,907

Tìm m để phương trình: (x2)(x3)(x+4)(x+5)=m có 4 nghiệm phân biệt

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương trình

(x2)(x3)(x+4)(x+5)=m<=>(x2+2x8)(x2+2x15)=m(1)

Đặt x2+2x+1=(x+1)2=y(y0) phương trình (1) trở thành:

(y9)(y16)=m<=>y225y+144m=0(2)

Nhận xét: Với mỗi giá trị y > 0 thì phương trình: (x+1)2=y có 2 nghiệm phân biệt, do đó phương trình (1) có 4 nghiệm phân biệtÛ phương trình (2) có 2 nghiệm dương phân biệt.

Δ'>0S>0P>0<=>Δ'=4m+49>025>0144m>0<=>494<n<144

Vậy với 494<n<144 thì phương trình (1) có 4 nghiệm phân biệt. 

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giải hệ phương trình: x3+xy210y=0x2+6y2=10

Xem đáp án » 13/07/2024 9,019

Câu 2:

Cho 3 số thực dương x, y, z thỏa mãn: 1x2+1y2+1z2=1 . Tìm giá trị nhỏ nhất của biểu thức: P=y2z2x(y2+z2)+z2x2y(z2+x2)+x2y2z(x2+y2)

Xem đáp án » 13/07/2024 8,591

Câu 3:

Chứng minh rằng nếu số nguyên n lớn hơn 1 thoả mãn n2 + 4 và n2 +16 là các số nguyên tố thì n chia hết cho 5.

Xem đáp án » 13/07/2024 5,159

Câu 4:

Tìm nghiệm nguyên của phương trình: x22y(xy)=2(x+1)

Xem đáp án » 13/07/2024 4,006

Câu 5:

Rút gọn biểu thức: A=2(3+5)22+3+5+2(35)2235

Xem đáp án » 13/07/2024 3,550

Câu 6:

Cho đường tròn (O; R) và dây cung BC=R3 cố định. Điểm A di động trên cung lớn BC sao cho tam giác ABC nhọn. Gọi E là điểm đối ứng vi B qua AC và F và điểm đối ứng vi C qua AB. Các đường tròn ngoại tiếp các tam giác ABE và ACF cắt nhau tại K (K không trùng A). Gọi H là giao điểm của BE và CF.

a)     Chứng minh KA là phân giác trong góc BKC và tứ giác BHCK ni tiếp.

Xem đáp án » 11/07/2024 3,371

Câu 7:

Cho đường tròn (O; R) và dây cung BC=R3 cố định. Điểm A di động trên cung lớn BC sao cho tam giác ABC nhọn. Gọi E là điểm đối ứng vi B qua AC và F và điểm đối ứng vi C qua AB. Các đường tròn ngoại tiếp các tam giác ABE và ACF cắt nhau tại K (K không trùng A). Gọi H là giao điểm của BE và CF.

b)     Xác định vị trí điểm A để diện tích tứ giác BHCK lớn nhất, tính diện tích lớn nhất của tứ giác đó theo R.

Xem đáp án » 13/07/2024 3,035

Bình luận


Bình luận