Câu hỏi:

13/07/2024 2,801

Tìm m để phương trình: (x2)(x3)(x+4)(x+5)=m có 4 nghiệm phân biệt

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương trình

(x2)(x3)(x+4)(x+5)=m<=>(x2+2x8)(x2+2x15)=m(1)

Đặt x2+2x+1=(x+1)2=y(y0) phương trình (1) trở thành:

(y9)(y16)=m<=>y225y+144m=0(2)

Nhận xét: Với mỗi giá trị y > 0 thì phương trình: (x+1)2=y có 2 nghiệm phân biệt, do đó phương trình (1) có 4 nghiệm phân biệtÛ phương trình (2) có 2 nghiệm dương phân biệt.

Δ'>0S>0P>0<=>Δ'=4m+49>025>0144m>0<=>494<n<144

Vậy với 494<n<144 thì phương trình (1) có 4 nghiệm phân biệt. 

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giải hệ phương trình: x3+xy210y=0x2+6y2=10

Xem đáp án » 13/07/2024 8,575

Câu 2:

Cho 3 số thực dương x, y, z thỏa mãn: 1x2+1y2+1z2=1 . Tìm giá trị nhỏ nhất của biểu thức: P=y2z2x(y2+z2)+z2x2y(z2+x2)+x2y2z(x2+y2)

Xem đáp án » 13/07/2024 8,167

Câu 3:

Chứng minh rằng nếu số nguyên n lớn hơn 1 thoả mãn n2 + 4 và n2 +16 là các số nguyên tố thì n chia hết cho 5.

Xem đáp án » 13/07/2024 4,772

Câu 4:

Tìm nghiệm nguyên của phương trình: x22y(xy)=2(x+1)

Xem đáp án » 13/07/2024 3,735

Câu 5:

Rút gọn biểu thức: A=2(3+5)22+3+5+2(35)2235

Xem đáp án » 13/07/2024 3,388

Câu 6:

Cho đường tròn (O; R) và dây cung BC=R3 cố định. Điểm A di động trên cung lớn BC sao cho tam giác ABC nhọn. Gọi E là điểm đối ứng vi B qua AC và F và điểm đối ứng vi C qua AB. Các đường tròn ngoại tiếp các tam giác ABE và ACF cắt nhau tại K (K không trùng A). Gọi H là giao điểm của BE và CF.

a)     Chứng minh KA là phân giác trong góc BKC và tứ giác BHCK ni tiếp.

Xem đáp án » 11/07/2024 3,214

Câu 7:

Cho đường tròn (O; R) và dây cung BC=R3 cố định. Điểm A di động trên cung lớn BC sao cho tam giác ABC nhọn. Gọi E là điểm đối ứng vi B qua AC và F và điểm đối ứng vi C qua AB. Các đường tròn ngoại tiếp các tam giác ABE và ACF cắt nhau tại K (K không trùng A). Gọi H là giao điểm của BE và CF.

b)     Xác định vị trí điểm A để diện tích tứ giác BHCK lớn nhất, tính diện tích lớn nhất của tứ giác đó theo R.

Xem đáp án » 13/07/2024 2,968

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store