Câu hỏi:

13/07/2024 4,192

Cho tam giác ABC vuông tại A (AB < AC) ngoại tiếp đường tròn tâm O. Gọi D,E,F lần lượt là tiếp điểm của (O) với các cạnh AB,AC,BC. Đường thẳng BO cắt các đường thẳng EF và DF lần lượt tại I và K.
1.     Tính số đo góc BIF

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1.     Vì BD, BF là các tiếp tuyến của (O) nên OD BD, OF BF.

Xét 2 tam giác vuông OBD và OBF có

OB chungOBD=OBF(gt)=>ΔOBD=ΔOBF (cạnh huyền–góc nhọn)

BD = BF

Mà OD = OF = r nên OB là trung trực của DF OB DF ∆ KIF vuông tại K.

Mà OD = OF = r nên OB là trung trực của DF OB DF ∆ KIF vuông tại K.DOE=90o

Theo quan hệ giữa góc nội tiếp và góc ở tâm cho đường tròn (O), ta có:

DFE=12DOE=45o

∆ KIF vuông cân tại K.

=>BIF=45o

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho a, b, c là các số dương thỏa mãn điều kiện 1a+1b+1c3 . Chứng minh rằng: a1+b2+b1+c2+c1+a2+12(ab+bc+ca)3

Xem đáp án » 13/07/2024 8,211

Câu 2:

Giải hệ phương trình  x3+4y=y3+16x1+y2=5(1+x2)

Xem đáp án » 13/07/2024 3,119

Câu 3:

Tính giá trị biểu thức: B=85+6273+856273

Xem đáp án » 13/07/2024 2,940

Câu 4:

Giải phương trình x29x216=1

Xem đáp án » 13/07/2024 2,309

Câu 5:

Cho tam giác ABC vuông tại A (AB < AC) ngoại tiếp đường tròn tâm O. Gọi D,E,F lần lượt là tiếp điểm của (O) với các cạnh AB,AC,BC. Đường thẳng BO cắt các đường thẳng EF và DF lần lượt tại I và K.

2.     Giả sử M là điểm di chuyển trên đoạn CE .

a.      Khi AM = AB, gọi H là giao điểm của BM và EF. Chứng minh rằng ba điểm A,O,H thẳng hàng, từ đó suy ra tứ giác ABHI nội tiếp.

b.     Gọi N là giao điểm của đường thẳng BM với cung nhỏ EF của (O), P, Q lần lượt là hình chiếu của N trên các đường thẳng DE và DF. Xác định vị trí điểm M để độ dài đoạn thẳng PQ max.

Xem đáp án » 13/07/2024 1,259

Câu 6:

Rút gọn biểu thức: A=1x+x2xx1+1xx

Xem đáp án » 13/07/2024 1,006

Bình luận


Bình luận