Câu hỏi:

13/07/2024 9,922

Cho a, b, c là các số dương thỏa mãn điều kiện 1a+1b+1c3 . Chứng minh rằng: a1+b2+b1+c2+c1+a2+12(ab+bc+ca)3

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta chứng minh BĐT

(a+b+c)(1a+1b+1c)9(*)(*)<=>3+(ab+ba)+(bc+cb)+(ca+ac)9

Áp dụng BĐT Cô – si cho hai số dương ta có:

ab+ba2bc+cb2ca+ac2=>(*) đúng

 

=>9a+b+c1a+1b+1c3=>a+b+c3

Trở lại bài toán: Áp dụng BĐT Cô si cho hai số dương ta có 1+b22b

Ta có: a1+b2=aab21+b2aab22b=aab2(1)

 

Tương tự ta có: 

b1+c2bbc2(2)c1+a2cca2(3)

 

Cộng từng vế của (1), (2) và (3) ta có:

a1+b2+b1+c2+c1+a2a+b+c12(ab+bc+ca)=>a1+b2+b1+c2+c1+a2+12(ab+bc+ca)a+b+c3

 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1.     Vì BD, BF là các tiếp tuyến của (O) nên OD BD, OF BF.

Xét 2 tam giác vuông OBD và OBF có

OB chungOBD=OBF(gt)=>ΔOBD=ΔOBF (cạnh huyền–góc nhọn)

BD = BF

Mà OD = OF = r nên OB là trung trực của DF OB DF ∆ KIF vuông tại K.

Mà OD = OF = r nên OB là trung trực của DF OB DF ∆ KIF vuông tại K.DOE=90o

Theo quan hệ giữa góc nội tiếp và góc ở tâm cho đường tròn (O), ta có:

DFE=12DOE=45o

∆ KIF vuông cân tại K.

=>BIF=45o

Lời giải

x3+4y=y3+16x1+y2=5(1+x2)(1)

– Xét x = 0, hệ (I) trở thành 4y=y3y2=4<=>y=±2

– Xét x ≠ 0, đặt yx=t<=>y=xt. Hệ (I) trở thành

x3+4xt=x3t3+16x1+x2t2=5(1+x2)<=>x3(t31)=4xt16xx2(t25)=4<=>x3(t31)=4x(t4)(1)4=x2(t25)(2)

 

Nhân từng vế của (1) và (2), ta được phương trình hệ quả

4x3(t31)=4x3(t4)(t25)<=>t31=t34t25t+20    (Do x0)<=>4t2+5t21=0<=>t=3t=74

+ Với t = – 3, thay vào (2) được x2 = 1 x = ±1.

x = 1 thì y = –3, thử lại (1;–3) là một nghiệm của (I)

x = –1 thì y = 3, thử lại (–1;3) là một nghiệm của (I)

+ Với t = 7/4 , thay vào (2) được x2=6431 (loại)

 

Vậy hệ (I) có các nghiệm (0;2), (0;–2), (1;–3), (–1;3).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay