Câu hỏi:

13/07/2024 7,583

Cho a, b, c là các số dương thỏa mãn điều kiện 1a+1b+1c3 . Chứng minh rằng: a1+b2+b1+c2+c1+a2+12(ab+bc+ca)3

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta chứng minh BĐT

(a+b+c)(1a+1b+1c)9(*)(*)<=>3+(ab+ba)+(bc+cb)+(ca+ac)9

Áp dụng BĐT Cô – si cho hai số dương ta có:

ab+ba2bc+cb2ca+ac2=>(*) đúng

 

=>9a+b+c1a+1b+1c3=>a+b+c3

Trở lại bài toán: Áp dụng BĐT Cô si cho hai số dương ta có 1+b22b

Ta có: a1+b2=aab21+b2aab22b=aab2(1)

 

Tương tự ta có: 

b1+c2bbc2(2)c1+a2cca2(3)

 

Cộng từng vế của (1), (2) và (3) ta có:

a1+b2+b1+c2+c1+a2a+b+c12(ab+bc+ca)=>a1+b2+b1+c2+c1+a2+12(ab+bc+ca)a+b+c3

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A (AB < AC) ngoại tiếp đường tròn tâm O. Gọi D,E,F lần lượt là tiếp điểm của (O) với các cạnh AB,AC,BC. Đường thẳng BO cắt các đường thẳng EF và DF lần lượt tại I và K.
1.     Tính số đo góc BIF

Xem đáp án » 13/07/2024 3,338

Câu 2:

Giải hệ phương trình  x3+4y=y3+16x1+y2=5(1+x2)

Xem đáp án » 13/07/2024 2,929

Câu 3:

Tính giá trị biểu thức: B=85+6273+856273

Xem đáp án » 13/07/2024 2,826

Câu 4:

Giải phương trình x29x216=1

Xem đáp án » 13/07/2024 2,158

Câu 5:

Cho tam giác ABC vuông tại A (AB < AC) ngoại tiếp đường tròn tâm O. Gọi D,E,F lần lượt là tiếp điểm của (O) với các cạnh AB,AC,BC. Đường thẳng BO cắt các đường thẳng EF và DF lần lượt tại I và K.

2.     Giả sử M là điểm di chuyển trên đoạn CE .

a.      Khi AM = AB, gọi H là giao điểm của BM và EF. Chứng minh rằng ba điểm A,O,H thẳng hàng, từ đó suy ra tứ giác ABHI nội tiếp.

b.     Gọi N là giao điểm của đường thẳng BM với cung nhỏ EF của (O), P, Q lần lượt là hình chiếu của N trên các đường thẳng DE và DF. Xác định vị trí điểm M để độ dài đoạn thẳng PQ max.

Xem đáp án » 13/07/2024 1,218

Câu 6:

Rút gọn biểu thức: A=1x+x2xx1+1xx

Xem đáp án » 13/07/2024 933

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL