Câu hỏi:

13/07/2024 2,297

Cho  ΔABCA^=90°, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác góc B cắt AC ở D.

a) Chứng minh: ΔABD=ΔEBD.

b) Chứng minh: DA = DE.

c) Tính số đo BED^

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a. ΔABD=ΔEBD  (c.g.c)

b. DA=DE (Cặp cạnh tương ứng)

c. A^=E^=900 (Cặp góc tương ứng)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho góc bẹt xOy có tia phân giác Ot. Trên tia Ot lấy hai điểm A, B ( A nằm giữa O và B). Lấy điểm COx sao cho OC = OB lấy điểm DOy sao cho OD = OA

a) Chứng minh AC = BD và ACBD

b) Gọi M, N lần lượt là trung điểm của AC và BD. Chứng minh OM = ON

c) Tính các góc của tam giác MON

d) Chứng minh ADBC

Xem đáp án » 13/07/2024 30,356

Câu 2:

Cho tam giác ABC có A^=50°. Vẽ đoạn thẳng AI vuông góc và bằng AB (I và C khác phía đối với AB). Vẽ đoạn thẳng AK vuông góc và bằng AC (K và B khác phía đối với AC). Chứng minh rằng:

a) IC = BK

b) ICBK

Xem đáp án » 13/07/2024 28,043

Câu 3:

Cho xOy^ có Om là tia phân giác, COm (CO). Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Chứng minh:

a. ΔOAC=ΔOBC

b. OAC^=OBC^ và CA = CB

Xem đáp án » 13/07/2024 15,604

Câu 4:

Cho tam giác có ba góc nhọn. Vẽ BDAC tại D, CEAB tại E. Trên tia đối của tia BD lấy điểm F sao cho BF = AC, trên tia đối của tia CE lấy điểm G sao cho CG = AB. Chứng minh: AF = AG và AFAG

Xem đáp án » 13/07/2024 13,145

Câu 5:

Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn thẳng.

a) Chứng minh: AC = DB và AC // DB.

b) Chứng minh: AD = CB và AD // CB.

c) Chứng minh: ACB^=BDA^.

d) Vẽ CHAB tại H.Trên tia đối của tia OH lấy điểm I sao cho OI = OH. Chứng minh: DIAB.

Xem đáp án » 13/07/2024 5,850

Câu 6:

(Tự luyện) Cho tam giác ABC có ba góc nhọn. Vẽ AHBC(HBC). Vẽ HIAB tại I, vẽ HKACtại K. Lấy E, F sao cho I là trung điểm của HE, K là trung điểm của HF, EF cắt AB, AC lần lượt tại M, N.

a) Chứng minh MH = ME và chu vi ΔMHN bằng EF

b) Chứng minh AE = AF

c) Nếu biết BAC^=600. Khi đó hãy tính các góc của tam giác AEF

( Chu vi của một tam giác bằng tổng độ dài 3 cạnh của tam giác)

Xem đáp án » 13/07/2024 4,569

Câu 7:

Cho tam giác ABC, kẻ AH vuông góc với BC HBC. Trên tia đối của tia HA, lấy điểm K sao cho HK = HA. Nối KB, KC. Tìm các cặp tam giác bằng nhau trong hình vẽ.

Xem đáp án » 13/07/2024 2,766
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua