Câu hỏi:

26/12/2020 1,877

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA = a2.

1) Chứng minh rằng các mặt bên hình chóp là những tam giác vuông.

2) Chứng minh rằng: (SAC) ⊥ (SBD).

3) Tính góc giữa SC và mp (SAB).

4) Tính góc giữa hai mặt phẳng (SBD) và (ABCD).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đề thi Học kì 2 Toán lớp 11 cực hay, có đáp án (Đề 2)

1)

● SA ⊥ (ABCD) ⇒ SA ⊥ AB, SA ⊥ AD.

⇒ Các tam giác SAB, SAD vuông tại A.

● BC ⊥ SA, BC ⊥ AB.

⇒ BC ⊥ SB ⇒ ΔSBC vuông tại B.

● CD ⊥ SA, CD ⊥ AD.

⇒ CD ⊥ SD ⇒ ΔSCD vuông tại D.

2)

● BD ⊥ AC, BD ⊥ SA

⇒ BD ⊥ (SAC) ⇒ (SBD) ⊥ (SAC).

3)

● BC ⊥ (SAB)

⇒ Đề thi Học kì 2 Toán lớp 11 cực hay, có đáp án (Đề 2)

● ΔSAB vuông tại A 

Đề thi Học kì 2 Toán lớp 11 cực hay, có đáp án (Đề 2)

● ΔSBC vuông tại B 

Đề thi Học kì 2 Toán lớp 11 cực hay, có đáp án (Đề 2)

4) Gọi O là tâm của hình vuông ABCD.

● Ta có:

Đề thi Học kì 2 Toán lớp 11 cực hay, có đáp án (Đề 2)

● ΔSAO vuông tại A 

Đề thi Học kì 2 Toán lớp 11 cực hay, có đáp án (Đề 2)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Tính chất nào sau đây không phải là tính chất của hình lăng trụ đứng:

Đề thi Học kì 2 Toán lớp 11 cực hay, có đáp án (Đề 2)

Lời giải

Đáp án A

- Phương pháp: Hình lăng trụ đứng là lăng trụ có cạnh bên vuông góc với đáy.

- Cách giải: Các cạnh bên của lăng trụ đứng cùng vuông góc với đáy nên chúng song song với nhau, do đó đáp án A sai.

Lời giải

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đặt SA=a;SB=b;SC=c;SD=d. Khẳng định nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay