Câu hỏi:
12/07/2024 538Hình thang cân ABCD (AB//CD) có đường chéo BD chia hình thang thành hai tam giác cân ABD cân tại A và tam giác BCD cân tại D. Tính các góc của hình thang cân đó.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho điểm M nằm bên trong tam giác đều ABC. Chứng minh rằng trong ba đoạn thẳng MA, MB, MC đoạn lớn nhất nhỏ hơn tổng hai đoạn kia.
Câu 2:
Cho tam giác ABC có BC = a, các đường trung tuyến BD, CE. Lấy các điểm M, N trên cạnh BC sao cho BM=MN=NC. Gọi I là giao điểm của AM và BD, K là giao điểm của AN và CE. Tính độ dài IK.
Câu 3:
Cho tam giác ABC, trọng tâm G.
1. Vẽ đường thẳng d đi qua G, cắt các đoạn thẳng AB, AC. Gọi A’, B’, C’ là hình chiếu của A, B, C trên d. Tìm mối liên hệ giữa các độ dài AA’, BB’, CC’.
2. Nếu đường thẳng d nằm ngoài tam giác ABC và G’ là hình chiếu của G trên d thì các độ dài AA’, BB’, CC’, GG’ có liên hệ gì?
Câu 4:
Trong tứ giác ABCD, gọi A’, B’, C’, D’ thứ tự là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng AA', BB', CC', DD' bốn đường thẳng đồng quy.
Câu 5:
Tứ giác ABCD có B và C nằm trên đường tròn có đường kính là AD. Tính độ dài CD biết rằng AD=8, AB=BC=2.
Câu 6:
Trên đoạn thẳng AB lấy các điểm M và N (M nằm giữa A và N). Vẽ về một phía của AB các tam giác đều AMD, MNE, BNF. Gọi G là trọng tâm của tam giác DEF. Chứng minh rằng khoảng cách từ G đến AB không phụ thuộc vào vị trí của điểm M, N trên đoạn AB.
Câu 7:
Cho tam giác nhọn ABC, trực tâm H, M là trung điểm BC. Qua H kẻ đường thẳng vuông góc với HM cắt AB và AC theo thứ tự ở E và F.
1. Trên tia đối của tia HC lấy điểm D sao cho HD = HC. Chứng minh rằng E là trực tâm của tam giác DBH.
2. Chứng minh rằng HE = HF.
về câu hỏi!