Câu hỏi:

23/04/2021 2,463 Lưu

Cho tam giác ABC có B^ = 60o, đường trung tuyến AM, đường cao CH. Vẽ đường tròn ngoại tiếp BHM. Kết luận nào đúng khi nói về các cung HB; MB; MH của đường tròn ngoại tiếp tam giác MHB?

A. Cung HB nhỏ nhất

B. Cung MB lớn nhất

C. Cung MH nhỏ nhất

D. Ba cung bằng nhau

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vì trong một đường tròn hai cung bằng nhau căng hai dây bằng nhau nên ta đi so sánh các đoạn thẳng HB; MB; MH

Xét tam giác BCH vuông tại H có:

cosB = HBBCHBBC = cos 60o = 12HB=BC2 = BM = CM

Xét tam giác HBM có BM = BH (cmt) và  = 60o nên ΔHBM là tam giác đều

=> BM = BH = HM

Suy ra ba cung HB; MB; MH bằng nhau

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì hai dây MC // AN nên hai cung AM và cung CN bằng nhau hay AM = CN

Suy ra MCNA là hình thang cân => MN = AC

Gọi H là giao của CD và AB. Khi đó vì AB CD tại H nên H là trung điểm của AB => AH = AB2=R32 

Xét tam giác vuông AHO, theo định lý Pytago ta có OH = AO2-AH2=R2

=> CH = 3R2 

Theo định lý Pytago cho tam giác ACH vuông ta có: AC =  CH2+AH2=R3

Vậy MN =  R3

Đáp án cần chọn là: A

Lời giải

Vì AO CD; AO // DE => CD DE => CDE^ = 90o

mà C, D, E  (O) nên CE là đường kính hay C; O; E thẳng hàng

Xét (O) có OA là đường cao trong tam giác cân ODC nên OA cũng là đường phân giác => COA^=AOD^

Suy ra cung AD bằng cung AC nên dây AD = AC

Lại thấy AOC^=BOE^ (đối đỉnh) nên cung AC bằng cung BE suy ra dây AC = BE

Phương án A, B, C đúng

Đáp án cần chọn là: D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. IA2 + IC2 + IB2 + ID2 = 2R2

B. IA2 + IC2 + IB2 + ID2 = 3R2

C. IA2 + IC2 + IB2 + ID2 = 4R2

D. IA2 + IC2 + IB2 + ID2 = 5R2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. IA2 + IC2 + IB2 + ID2 = AD2 + BC2

B. IA2 + IC2 + IB2 + ID2 = BD+ AC2

C. IA2 + IC2 + IB2 + ID2 = BE2

D. IA2 + IC2 + IB2 + ID2 = AD2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP