Câu hỏi:

26/04/2021 4,988 Lưu

Cho tam giác ABC vuông tại A, đường cao AH. Đường tròn đường kính BH cắt AB tại D, đường tròn đường kính CH cắt AC tại E. Chọn khẳng định sai trong các khẳng định sau:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Gọi I, J lần lượt là trung điểm của BH và CH

Để chứng minh DE là tiếp tuyến của đường tròn tâm I đường kính BH ta chứng minh ID  DE hay ODI^ = 90o

Vì D, E lần lượt thuộc đường tròn đường kính BH và HC nên ta có BDH^=CEH^=90o

Suy ra tứ giác ADHE là hình chữ nhật

Gọi O là giao điểm của AH và DE, khi đó ta có OD = OH = OE = OA

Suy ra ODH cân tại I ODH^=OHD^

Ta cũng có IDH cân tại I IDH^=IHD^

Từ đó IDH^+HDO^=IHD^+DHO^IDO^=90o IDDE

Ta có ID DE, D (I) nên DE là tiếp tuyến của đường tròn đường kính BH

Từ chứng minh trên, suy ra các phương án B, C, D đúng

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Lấy E là trung điểm của AH. Do M là trung điểm của BH (gt) nên EM là đường trung bình của AHB  AM // AB và EM =12AB

Hình chữ nhật ABCD có CD // AB và CD = AB mà N là trung điểm của DC, suy ra DN // AB và DN =12AB

Từ (1) và (2) ta có AM // DN và AM = DN

Suy ra tứ giác AMND là hình bình hành, do đó DI // MN

Do EM // AB mà AB  AD (tính chất hình chữ nhật)

AH  DM (dt) nên E là trực tâm của ADM

Suy ra DE  AM, mà DE // MN (cmt)  MN  AM tại M

Vì vậy MN là tiếp tuyến của đường tròn (A; AM)

Lời giải

Đáp án A

Gọi I là giao điểm của MN và OP

Ta có OP  MN tại I  I là trung điểm của MN

Nên IM=MN2=122=6cm

Xét tam giác OMI có OI=OM2MI2=10262=8cm

Xét tam giác vuông MPO, theo hệ thức lượng trong tam giác vuông ta có:

MO2=OI.OPOP=MO2OI=1028=12,5cm

Vậy OP = 12,5cm

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP