Câu hỏi:
31/05/2021 5,190Cho hình vuông ABCD cạnh 8 cm. M, N, P, Q là trung điểm các cạnh AB, BC, CD, DA. Tính diện tích tứ giác MNPQ.
Quảng cáo
Trả lời:
Vì ABCD là hình vuông và M, N, P, Q là trung điểm các cạnh AB, BC, CD, CA nên ta có AM = MB = BN = NC = CP = PD = DQ = QA = 4 cm
Từ đó: ΔAQM = ΔBMN = ΔCPN = ΔDQP (c – g – c)
Suy ra
Lại có SABCD = 82 = 64.
Nên SMNPQ = SABCD – SAMQ – SMBN – SCPN – SDPQ = 82 – 4.=32.SABCD
Vậy SMNPQ = 32 cm2.
Đáp án cần chọn là: D
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi cạnh của hình vuông ABCD là a.
Vì ABCD là hình vuông là M, N, P, Q là trung điểm các cạnh AB, BC, CD, DA nên ta có AM = MB = BN = NC = CP = PD = DQ = QA =
Từ đó: ΔAQM = ΔBMN = ΔCPN = ΔDQP (c – g – c)
Lại có SABCD = a2.
Nên SMNPQ = SABCD – SAMQ – SMBN – SCPN – SDPQ = a2 – 4=.SABCD.
Vậy SMNPQ = SABCD.
Đáp án cần chọn là: C
Lời giải
Trên tia đối của tia CD lấy điểm M sao cho CM = AK.
Ta có AK + CE = CM + CE = EM.
Ta cần chứng minh EM = BE
Xét ΔBAK và ΔBCM có:
AK = CM (cách vẽ)
= 900 (gt)
BA = BC (gt)
=> ΔBAK = ΔBCM (c.g.c)
=> (góc tương ứng)
Mà (gt) nên (bắc cầu)
Ta có:
Suy ra: tam giác EBM cân tại E (định nghĩa tam giác cân).
=> BE = EM
=> AK + CE = CM +CE = EM = BE
=> AK + CE = BE
Đáp án cần chọn là: A