Câu hỏi:

31/05/2021 13,952

Cho hình thang ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Hình thang ABCD có thêm điều kiện gì thì MNPQ là hình thoi. Hãy chọn câu đúng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+ Xét tam giác ABC có MN là đường trung bình nên MN // AC; MN = 12AC (1)

Tương tự ta có PQ là đường trung bình tam giác ADC nên PQ // AC; PQ = 12AC (2)

Từ (1) và (2) suy ra MN // PQ; MN = PQ => MNPQ là hình bình hành

Để hình bình hành MNPQ là hình thoi ta cần có MN = MQ

Mà MN = 12AC (cmt); MQ = 12BD (do MQ là đường trung bình tam giác ABD)

Suy ra AC = BD

Vậy để hình bình hành MNPQ là hình thoi thì AC = BD

Đáp án cần chọn là: D

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Hình thoi có chu vi bằng 20cm thì độ dài cạnh của nó bằng

Lời giải

Gọi cạnh của hình thoi là a cm (a > 0)

Vì hình thoi có 4 cạnh bằng nhau nên chu vi hình thoi là 4a = 20  a = 5cm

Vậy cạnh hình thoi có độ dài là 5cm

Đáp án cần chọn là: B

Lời giải

Gọi O là giao điểm của AC và BD thì AC ⊥ BD (do O là giao điểm của hai đường chéo của hình thoi)

Áp dụng định nghĩa, tính chất về góc và giả thiết vào hình thoi ABCD, ta được:

AB = AD, B^=D^; BE = DF

Từ đó suy ra ΔABE = ΔADF (c.g.c)

Suy ra A1^=A4^ (hai góc tương ứng).

Mà AC là phân giác của A^ 

=> A2^=A3^ (1)

Do đó AO là phân giác của HAG^

Xét tam giác AGH có AO là đường cao, đồng thời là đường phân giác nên tam giác AGH cân tại A.

Suy ra HO = OG (2)

Do ABCD là hình thoi nên AO = OC (tính chất đường chéo của hình thoi) (3)

Từ (1), (2), (3) suy ra: AHCG là hình thoi.

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay