Câu hỏi:

31/05/2021 4,260

Cho hình bình hành ABCD. Gọi E, F là trung điểm của các cạnh AD và BC. Các đường BE, DE cắt các đường chéo AC tại P và Q. Tứ giác EPFQ là hình thoi nếu góc ACD bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi O là giao điểm của hai đường chéo AC và BD

Vì ABCD là hình bình hành nên O là trung điểm của AC, BD.

Xét tứ giác EDFB có ED//FBED=FB=12AD

nên EDFB là hình bình hành

suy ra BE=DFBE//DF

Xét tam giác ABD có P là giao điểm hai đường trung tuyến nên P là trọng tâm ΔABD => EP = 13BE

Xét tam giác CBD có Q là giao điểm hai đường trung tuyến nên Q là trọng tâm ΔCBD => QF = 13DF

Mà BE = DF (cmt) => EP = QF

Xét tứ giác EPFQ có EP=QFEP//QF

 => EPQF là hình bình hành

Để hình bình hành EPFQ là hình thoi thì EF ⊥ PQ.

Mà EF // CD (do E là trung điểm AD, F là trung điểm BC)

Nên PQ ⊥ CD hay AC ⊥ CD => ACD^ = 900.

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+ Xét tam giác ABC có MN là đường trung bình nên MN // AC; MN = 12AC (1)

Tương tự ta có PQ là đường trung bình tam giác ADC nên PQ // AC; PQ = 12AC (2)

Từ (1) và (2) suy ra MN // PQ; MN = PQ => MNPQ là hình bình hành

Để hình bình hành MNPQ là hình thoi ta cần có MN = MQ

Mà MN = 12AC (cmt); MQ = 12BD (do MQ là đường trung bình tam giác ABD)

Suy ra AC = BD

Vậy để hình bình hành MNPQ là hình thoi thì AC = BD

Đáp án cần chọn là: D

Lời giải

Gọi O là giao điểm của AC và BD thì AC ⊥ BD (do O là giao điểm của hai đường chéo của hình thoi)

Áp dụng định nghĩa, tính chất về góc và giả thiết vào hình thoi ABCD, ta được:

AB = AD, B^=D^; BE = DF

Từ đó suy ra ΔABE = ΔADF (c.g.c)

Suy ra A1^=A4^ (hai góc tương ứng).

Mà AC là phân giác của A^ 

=> A2^=A3^ (1)

Do đó AO là phân giác của HAG^

Xét tam giác AGH có AO là đường cao, đồng thời là đường phân giác nên tam giác AGH cân tại A.

Suy ra HO = OG (2)

Do ABCD là hình thoi nên AO = OC (tính chất đường chéo của hình thoi) (3)

Từ (1), (2), (3) suy ra: AHCG là hình thoi.

Đáp án cần chọn là: A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP