Câu hỏi:

18/01/2021 40,033

Từ các chữ số 0, 1, 2, 3, 4, 5, 8 lập được bao nhiêu số có ba chữ số khác nhau, chia hết cho 2 và 3?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+ Trường hợp 1: Chữ số cuối cùng bằng 0.

các cặp số có thể xảy ra là (1;2),(1;5),(1;8),(2;4),(4;5),(4;8). 

Mỗi bộ số  tạo ra 2 số thỏa mãn 

Trường hợp này có 2!.6=12 số.

+ Trường  hợp 2: Chữ số cuối bằng 2

ta có các bộ (1;0),(4;0),(1; 3),(3;4),(5;8),

 Mỗi bộ số ( 1; 3); (3; 4);  ( 5; 8) tạo ra 2 số thỏa mãn

  Mỗi bộ số ( 1; 0); ( 4; 0) tạo ra 1 số thỏa mãn ,

Như  vậy , trong trường  hợp này có tất cả: 2.3+2=8 số.

+ Trường hợp 3: Chữ số cuối bằng 4

 Ta có các bộ (2;0),(2; 3),(3;5),(3;8)

Mỗi bộ (2; 3);  (3; 5) ;  (3; 8)  tạo ra 2 số thỏa mãn

Bộ (2; 0) tạo ra 1 số thỏa mãn

Trường hợp này có :  2.3+1=7 số.

+ Trường hợp 4. Chữ số cuối bằng 8

ta có các bộ (0;1),(0;4),(1; 3),(2;5),(3;4)

Mỗi bộ ( 1; 3); ( 2; 5);  (3; 4) tạo ra 2 số  thỏa mãn

Mỗi bộ (0; 1); (0; 4) tạo ra 1 số thỏa mãn.

Trường hợp này có:  2.3+2=8 số.

Kết hợp lại ta có 12+8+7+8= 35 số.

Chọn C

Avatar

Nguyễn Đức Hải

Tại sao trong trường hợp 3, số cuối cùng = 4, ko có cặp số 0;8

linh bùi

TH 2 còn cặp số (5;2)

Avatar

Nguyễn Đức Hải

Ko đc trùng nhau, 5;2 bị trùng số 2 rồi

Ngan Nguyen

Với năm chữ số 1,2,3,5,6 có thể lập được bao nhiêu số có 5 chữ số đôi một khác nhau
và chia hết cho 5 ?

Avatar

trogiangvietjack

24

Ảnh đính kèm

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương án 1: Xét các số được lập có 3 chữ số lẻ, 3 chữ số chẵn trong đó không có số 0.

+ Bước 1: Chọn 3 số lẻ, có  cách.

+ Bước 2: Chọn 3 số chẵn, có   cách.

+ Bước 3: Xếp thứ tự 6 chữ số vừa lấy theo hàng ngang, có 6! = 720 cách.

Theo quy tắc nhân thì số các số trong phương án này là: 10.4.720 = 28800 số.

Phương án 2: Xét các số được lập có 3 chữ số lẻ, 3 chữ số chẵn trong đó có số 0.

Tương tự như trên, số các số tự nhiên trong phương án này là:  số.

Vậy số các số tự nhiên thỏa mãn yêu cầu là: 28800 + 36000 = 64800 số.

Chọn B.

Lời giải

Gọi  là số cần lập.

Vì tổng của ba số đầu nhỏ hơn tổng của  ba số cuối 1 đơn  vị nên:

   (1)

 và đôi một khác nhau nên

a1 +a2+ a3 + a4+a5+a6= 1 + 2 + 3 + 4 + 5 + 6 =21             (2)

Từ (1), (2) suy ra: 1 + a2 + a3 = 10  

Phương trình này có các bộ nghiệm là: ( a­1 , a2  , a3 ) = (1,3,6); (1,4,5); (2,3,5)

Với mỗi bộ ta có 3!.3!=36  số.

Vậy có cả 3.36=108  số cần lập.

Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay