Câu hỏi:

20/08/2021 302 Lưu

Cho hàm số y=fx=x3+3x4. Có bao nhiêu giá trị của tham số m để phương trình fx3=fx+m3+m có đúng hai nghiệm phân biệt?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Đặt u=fx+m3u3=fx+m. Khi đó, fx3=u+m

u3+u=fx3+fx          *

Xét hàm số gx=x3+xg'x=3x2+1>0,x

Hàm số y=g(x) luôn đồng biến trên 

*u=fxfx3m=fxfx3fx=m     **

Đặt t=fx**t3t=m

Xét hàm số y=fx=x3+3x4f'x=3x2+3>0, x

Hàm số y=f(x) luôn đồng biến trên 

 Mỗi giá trị của t cho duy nhất một nghiệm của phương trình x3+3x4=t

 Phương trình fx3=fx+m3+m có đúng hai nghiệm phân biệt thì phương trình t3t=m có đúng hai nghiệm phân biệt.

Xét hàm số ft=t3tf't=3t21

f't=0t=±13

Bảng biến thiên

Từ bảng biến thiên ta có phương trình t3t=m có đúng hai nghiệm phân biệt m=±239.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Ta có 4 cách chọn cửa đi vào và 3 cách chọn cửa đi ra (Do cửa đi vào và đi ra khác nhau)

Do đó theo quy tắc nhân có  cách đi

Lời giải

Đáp án A

Ta có y'=lnx+1. Hàm số đồng biến y'>0lnx>1x>1e.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP