Câu hỏi:

22/08/2021 197

Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;2;3), B(1;0;2), C(x;y;2) thẳng hàng. Khi đó tổng x+y bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Ta có: AB=(2;2;5)AC=(x+1;y2;1).

Khi đó A, B, C thẳng hàng x+12=y22=15x=35;y=85x+y=1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Chu vi: C=2πrr=C2π=6π2π=3.

Ta có h=4l=r2+h2=5Sxq=πrl=15π

Lời giải

Đáp án B

Gọi M(x;y) là điểm biểu diễn số phức z=x+yi (x,y).

Khi đó (z+1)(z¯2i)=(x+1+yi)x(y+2)i=x2+y2+x+2y(2x+y+2)i là số thuần ảo.

Suy ra: x2+y2+x+2y=0x+122+(y+1)2=54.

Vậy tập hợp điểm biểu diễn số phức z là đường tròn có bán kính R=52S=πR2=5π4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP