Câu hỏi:

23/08/2021 579 Lưu

Cho hàm số fx=ax+bcx+d (với a, b, c, d là các số thực) có đồ thị hàm số f'(x) như hình vẽ. Biết rằng giá trị lớn nhất của hàm số y = f (x) trên đoạn [-3;-2] bằng 7. Giá trị f(2) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

 f'x=adbccx+d2.

Từ đồ thị ta có: c+d=0adbc=3d2c=dadbd=3d2c=dab=3d

Từ đồ thị f'(x) > 0 nên hàm số fx=ax+bcx+d đồng biến trên ;1 và 1;+

max3;2fx=f2=72a+b2c+d=723d+b+b2c+d=76db=7db=df2=2a+d2c+d=9d3d=3

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án B

Ta có: limxy=limx+y=+a>0 

Đồ thị hàm số cắt trục tung tại điểm có tung độ âm d<0

Vì đồ thị hàm số có 2 điểm cực trị, ta có: y'=3ax3+2bx+c=0 có hai nghiệm phân biệt x1, x2.

x1+x2=2b3a<0b>0;x1.x2=c3a=0c=0

Vậy a>0;b>0;c=0;d<0

Lời giải

Đáp án A

Ta có: V=SA'B'C'.dA,A'B'C' 

Mà VA.A'B'C'=13SA'B'C'.dA,A'B'C'=13V

VA.BCB'C'=VVA.A'B'C'=V13V=23V

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP