Câu hỏi:

26/08/2021 220 Lưu

Cho a, b là các số thực dương thỏa mãn 02dxax+b=2aln2 và 02dxbx+a=1bln2a+13. Khi đó tổng T=a+b bằng bao nhiêu ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Với a,b>0 ta có:

+) 02dxax+b=1alnax+b02=1aln2a+bb=2aln22a+bb=42a=3b (*).

+)  02dxbx+a=1blnbx+a02=1bln2b+aa=1bln2a+13

2b+aa=2a+136b+3a=2a2+a (2*)

Thay (*) vào (2*), ta được: 4a+3a=2a2+a2aa3=0a=0a=3a>0a=3*b=2.

Suy ra T=a+b=5.

Chọn D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có au'=u'aulnay'=102x+1'=2.102x+1ln10=20.102xln10.

Chọn D

Lời giải

Do a0;1logab>00<b<1.

Chú ý: logab>0a,b0;1a,b>1 và logab<0a0;1b>1 hoặc a>1b0;1.

Chọn D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP