Câu hỏi:

29/08/2021 1,053 Lưu

Cho hàm số bậc ba y=f(x) có đồ thị là đường cong như hình vẽ bên. Hỏi phương trình fxfx-2=0 có bao nhiêu nghiệm phân biệt

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

- Đặt t=xfxft=2. Sử dụng tương giao đồ thị hàm số giải phương trình tìm t.

- Cô lập f(x), tiếp tục sử dụng tương giao hàm số để giải phương trình.

- Sử dụng kĩ năng chọn đại diện 1 số cụ thể thỏa mãn điều kiện, để bài toán đơn giản hơn.

Đặt t=xf(x) ta có: ft-2=0ft=2.

Dựa vào đồ thị hàm số ta thấy phương trình f(t)=2 có 3 nghiệm phân biệt [t=a-4;-2t=0t=b0;2

[xfx=a-4;-2xfx=0xfx=b0;2[fx=axx0;a-4;-2x=0fx=0x=-4fx=bxx0;b0;2

Chọn a=-3, xét phương trình fx=-3x1, số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(x) và y=-3x.

Chọn b=1, xét phương trình fx=1x2, số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(x) và y=1x.

Dựa vào đồ thị hàm số ta thấy phương trình (1) có 2 nghiệm, phương trình (2) có 2 nghiệm.

Vậy phương trình đã cho có 6 nghiệm phân biệt.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

- Sử dụng tổ hợp chọn 2 chữ số chẵn và 2 chữ số lẻ.

- Sử dụng hoán vị.

Chọn 2 chữ số chẵn khác nhau và khác 0 có C42 cách chọn.

Chọn 2 chữ số lẻ khác nhau có C52 cách chọn.

Hoán đổi 4 chữ số đã chọn có 4! cách.

Vậy có tất cả 4!C42.C52 số thỏa mãn

Câu 2

Lời giải

Đáp án D

- Sử dụng công thức lnab=lna-lnb

- Sử dụng công thức tính đạo hàm lnu'=u'u

- Thay lần lượt x=1;2;...;2020 rút gọn và tính S.

Ta có:

fx=ln2020-lnx+1x=ln2020-lnx+1+lnx

f'x=1x-1x+1

Khi đó ta có

S=f'1+f'2+...+f'2020S=11-12+12-13+...+12020-12021S=1-12021=20202021

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP