Câu hỏi:
11/07/2024 1,146(3 điểm):
Cho tam giác ABC, các điểm M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. Trên tia đối của tia NP lấy điểm D sao cho ND = NP.a) Chứng minh: Tứ giác ADCP là hình bình hành.
b) Gọi F là giao điểm của MN và DC. Giả sử MN = 3cm. Tính BC và chứng minh FD = FC.
c) Gọi H là giao điểm của AP và MN; I là giao điểm của NP và HC. Chứng minh: B, I, F thẳng hàng.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Xét tứ giác ADCP có:
N là trung điểm của AC
N là trung điểm của DP (ND = NP)
⇒ tứ giác ADCP là hình bình hành.
b) Xét tam giác ABC có:
M là trung điểm AB
N là trung điểm AC
⇒ MN là đường trung bình tam giác ABC
⇒ MN//BC, \(MN = \frac{1}{2}BC\)
⇒ BC = 2MN = 2.3 = 6cm
Ta có MN//BC (MN là đường trung bình tam giác ABC)
⇒ NF//PC
Trong tam giác DCP có:
N là trung điểm của DP
NF//PC
⇒ F là trung điểm của DC
Hay DF = FC
Suy ra NF là đường trung bình của ΔDCP.
\( \Rightarrow NF = \frac{1}{2}PC\)
c) Chứng minh tương tự: HN là đường trung bình của ΔACP và H là trung điểm của AP
\( \Rightarrow HN = \frac{1}{2}PC\)
Ta có: \(HF = HN + NF = \frac{1}{2}PC + \frac{1}{2}PC = PC\)
Mà có: PC = PB nên HN= PB
Xét tứ giác BHFP có HN = PB và HN // PB (vì MN//BC)
⇒ BHFP là hình hình hành
Gọi BF cắt HP tại O. Khi đó O là trung điểm của BF và HP.
Trong tam giác APC có CH và PN là đường trung tuyến
và CH cắt PN tại I
I là trọng tâm tam giác APC
\( \Rightarrow PI = \frac{2}{3}PN\)
Trong tam giác PHF có: PN là đường trung tuyến và \(PI = \frac{2}{3}PN\)
I là trọng tâm tam giác PHF
mà có FO là đường trung tuyến (vì O là trung điểm của HP)
I thuộc FO
F, I, O thẳng hàng
mà F, O, B thẳng hàng
nên B, I, F thẳng hàng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
(0,5 điểm):
Tìm giá trị nhỏ nhất của biểu thức A, biết:A = x2+ 5y2– 4xy – 2y + 2x + 2010.
Câu 2:
Câu 6:
(1,5 điểm):
Tìm x biết:a) 15x2– 3x = 0;
b) (3x – 2)(x + 3) + (x2– 9) = 0;
c) (x – 1)3– (x + 1)(2 – 3x) = – 3.
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 KNTT Bài 1: Đơn thức có đáp án
Bài tập Nhân đơn thức với đa thức (có lời giải chi tiết)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích, diện tích xung quanh của hình chóp tứ giác đều (có lời giải)
9 Bài tập Bài toán thực tiễn liên quan đến phân thức đại số (có lời giải)
về câu hỏi!