Câu hỏi:

11/07/2024 1,146

(3 điểm):

Cho tam giác ABC, các điểm M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. Trên tia đối của tia NP lấy điểm D sao cho ND = NP.

a) Chứng minh: Tứ giác ADCP là hình bình hành.

b) Gọi F là giao điểm của MN và DC. Giả sử MN = 3cm. Tính BC và chứng minh FD = FC.

c) Gọi H là giao điểm của AP và MN; I là giao điểm của NP và HC. Chứng minh: B, I, F thẳng hàng.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Xét tứ giác ADCP có:

N là trung điểm của AC

N là trung điểm của DP (ND = NP)

⇒ tứ giác ADCP là hình bình hành.

b) Xét tam giác ABC có:

M là trung điểm AB

N là trung điểm AC

⇒ MN là đường trung bình tam giác ABC

⇒ MN//BC, \(MN = \frac{1}{2}BC\)

⇒ BC = 2MN = 2.3 = 6cm

Ta có MN//BC (MN là đường trung bình tam giác ABC)

⇒ NF//PC

Trong tam giác DCP có:

N là trung điểm của DP

NF//PC

⇒ F là trung điểm của DC

Hay DF = FC

Suy ra NF là đường trung bình của ΔDCP.

\( \Rightarrow NF = \frac{1}{2}PC\)

c) Chứng minh tương tự: HN là đường trung bình của ΔACP và H là trung điểm của AP

\( \Rightarrow HN = \frac{1}{2}PC\)

Ta có: \(HF = HN + NF = \frac{1}{2}PC + \frac{1}{2}PC = PC\)

Mà có: PC = PB nên HN= PB

Xét tứ giác BHFP có HN = PB và HN // PB (vì MN//BC)

⇒ BHFP là hình hình hành

Gọi BF cắt HP tại O. Khi đó O là trung điểm của BF và HP.

Trong tam giác APC có CH và PN là đường trung tuyến

và CH cắt PN tại I

I là trọng tâm tam giác APC

\( \Rightarrow PI = \frac{2}{3}PN\)

Trong tam giác PHF có: PN là đường trung tuyến và \(PI = \frac{2}{3}PN\)

I là trọng tâm tam giác PHF

mà có FO là đường trung tuyến (vì O là trung điểm của HP)

I thuộc FO

F, I, O thẳng hàng

mà F, O, B thẳng hàng

nên B, I, F thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

(0,5 điểm):

Tìm giá trị nhỏ nhất của biểu thức A, biết:

A = x2+ 5y2– 4xy – 2y + 2x + 2010.

Xem đáp án » 12/07/2024 4,355

Câu 2:

Phân tích đa thức: 5x2– 10x thành nhân tử ta được kết quả nào đây?

Xem đáp án » 23/03/2022 3,821

Câu 3:

Tìm x, biết x2– 25 = 0, ta được:

Xem đáp án » 23/03/2022 2,406

Câu 4:

Giá trị của biểu thức x2– 4x + 4 tại x = 2 là:

Xem đáp án » 23/03/2022 1,782

Câu 5:

Trong các cách viết sau, cách viết nào đúng?

Xem đáp án » 23/03/2022 953

Câu 6:

(1,5 điểm):

Tìm x biết:

a) 15x2– 3x = 0;

b) (3x – 2)(x + 3) + (x2– 9) = 0;

c) (x – 1)3– (x + 1)(2 – 3x) = – 3.

Xem đáp án » 12/07/2024 882

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store