Câu hỏi:
11/07/2024 1,399(3 điểm):
Cho tam giác ABC, các điểm M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. Trên tia đối của tia NP lấy điểm D sao cho ND = NP.a) Chứng minh: Tứ giác ADCP là hình bình hành.
b) Gọi F là giao điểm của MN và DC. Giả sử MN = 3cm. Tính BC và chứng minh FD = FC.
c) Gọi H là giao điểm của AP và MN; I là giao điểm của NP và HC. Chứng minh: B, I, F thẳng hàng.
Câu hỏi trong đề: Đề thi Giữa kì 1 Toán 8 có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Xét tứ giác ADCP có:
N là trung điểm của AC
N là trung điểm của DP (ND = NP)
⇒ tứ giác ADCP là hình bình hành.
b) Xét tam giác ABC có:
M là trung điểm AB
N là trung điểm AC
⇒ MN là đường trung bình tam giác ABC
⇒ MN//BC, \(MN = \frac{1}{2}BC\)
⇒ BC = 2MN = 2.3 = 6cm
Ta có MN//BC (MN là đường trung bình tam giác ABC)
⇒ NF//PC
Trong tam giác DCP có:
N là trung điểm của DP
NF//PC
⇒ F là trung điểm của DC
Hay DF = FC
Suy ra NF là đường trung bình của ΔDCP.
\( \Rightarrow NF = \frac{1}{2}PC\)
c) Chứng minh tương tự: HN là đường trung bình của ΔACP và H là trung điểm của AP
\( \Rightarrow HN = \frac{1}{2}PC\)
Ta có: \(HF = HN + NF = \frac{1}{2}PC + \frac{1}{2}PC = PC\)
Mà có: PC = PB nên HN= PB
Xét tứ giác BHFP có HN = PB và HN // PB (vì MN//BC)
⇒ BHFP là hình hình hành
Gọi BF cắt HP tại O. Khi đó O là trung điểm của BF và HP.
Trong tam giác APC có CH và PN là đường trung tuyến
và CH cắt PN tại I
I là trọng tâm tam giác APC
\( \Rightarrow PI = \frac{2}{3}PN\)
Trong tam giác PHF có: PN là đường trung tuyến và \(PI = \frac{2}{3}PN\)
I là trọng tâm tam giác PHF
mà có FO là đường trung tuyến (vì O là trung điểm của HP)
I thuộc FO
F, I, O thẳng hàng
mà F, O, B thẳng hàng
nên B, I, F thẳng hàng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
A = x2+ 5y2– 4xy – 2y + 2x + 2010
= x2+ 4y2+ y2– 4xy – 4y + 2y + 2x + 1 + 1 + 2008
= (x2– 4xy + 4y2) + (2x – 4y) + (y2+ 2y + 1) + 1 + 2008
= (x – 2y)2+ 2(x – 2y) + 1 + (y + 1)2+ 2008
= (x – 2y + 1)2+ (y + 1)2+ 2008
Vì \[{\left( {x--2y + 1} \right)^2} + {\left( {y + 1} \right)^2}\; \ge 0{\rm{ }}\forall x;y\]
Do đó (x – 2y + 1)2+ (y + 1)2+ 2008 ≥ 2008 với mọi x, y
Dấu “=” xảy ra khi x – 2y + 1 = 0 và y + 1 = 0
Ta có:
y + 1 = 0 ⇒ y = – 1
Thay y = – 1 vào x – 2y + 1 = 0
⇒ x – 2.(– 1) + 1 = 0
⇒ x = – 3
Vậy GTNN của A là 2008 khi x = – 3 và y = – 1.
Lời giải
Đáp án đúng là: C
Ta có: 5x2– 10x = 5x(x – 2).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
10 Bài tập Nhận biết đơn thức, đơn thức thu gọn, hệ số, phần biến và bậc của đơn thức (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 5)
Dạng 8: Bài luyện tập 3 dạng 4. Tổng hợp có đáp án
Dạng 2: Bài luyện tập 1 Dạng 2: Rút gọn phân thức có đáp án