Câu hỏi:

23/04/2022 384

Cho hình chóp S.ABCD có đáy ABCD  là hình chữ nhật với AD=a,AB=2a . Cạnh bên SA vuông góc với đáy. Gọi M,N lần lượt là trung điểm của SB và SD. Tính khoảng cách d từ S đến mặt phẳng (AMN) .

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

- Tính thể tích chóp S.ABCD, sử dụng tỉ lệ thể tích Simpson tính thể tích khối chóp VS.AMN.

- Sử dụng công thức

SAMN=p(pAM)(pAN)(pMN) với p là nửa chu vi ΔAMN.

Giải chi tiết:

Cho hình chóp có đáy là hình chữ nhật với. Cạnh bên vuông góc với đáy (ảnh 1)

Áp dụng định lí Pytago trong các tam giác vuông SAB,SAD,ABD ta có:

SB=SA2+AB2=4a2+4a2=22a

SD=SA2+AD2=4a2+a2=5a

BD=AB2+AD2=4a2+a2=5a

Khi đó ta có AM=12SB=2a;AN=12SD=a52 (đường trung tuyến trong tam giác vuông).

Ta có: MN là đường trung bình của ΔSBD nên MN=BD2=a52.

Gọi p là nửa chu vi tam giác AMN ta có: p=AM+AN+MN2=2a+a52+a522=2+52a.

⇒ Diện tích tam giác AMN là SAMN=p(pAM)(pAN)(pMN)=a264

Ta có: VS.AMNVS.ABD=SMSB.SNSD=14 VS.AMN=14VS.ABD=18VS.ABCD.

VS.ABCD=13SA.SABCD=13.2a.2a.a=4a33 VS.AMN=18.4a33=a36.

Lại có VS.AMN=13d(S;(AMN)).SAMN, do đó d(S;(AMN))=3VS.AMNSAMN=3.a36a264=a63.

Vậy d(S;(AMN))=a63

Đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gieo một con súc sắc cân đối và đồng chất hai lần. Tính xác suất để ít nhất một lần xuất hiện mặt sáu chấm.

Xem đáp án » 25/03/2022 4,748

Câu 2:

Hàm số y=ax+bcx+d với a>0 có đồ thị như hình vẽ bên. Mệnh đề nào sau đây là đúng?

Hàm số với có đồ thị như hình vẽ bên. Mệnh đề nào sau đây là đúng?   (ảnh 1)

Xem đáp án » 23/04/2022 4,242

Câu 3:

Hỏi trên [0;π2) , phương trình sinx=12 có bao nhiêu nghiệm?

Xem đáp án » 23/04/2022 2,810

Câu 4:

Nghiệm của phương trình 32x1=27  là:

Xem đáp án » 23/04/2022 2,452

Câu 5:

Trong bốn hàm số được liệt kẻ ở bốn phương án A, B, C, D dưới đây. Hàm số nào có bảng biến thiên như sau?

Trong bốn hàm số được liệt kẻ ở bốn phương án A, B, C, D dưới đây. Hàm số nào có bảng biến thiên như sau? (ảnh 1)

Xem đáp án » 25/03/2022 2,030

Câu 6:

Cho hàm số y=f(x) là hàm đa thức bậc bốn có đồ thị như hình vẽ bên. Hỏi có bao nhiêu giá trị của tham số m thuộc đoạn [12;12] để hàm số g(x)=|2f(x1)+m| có đúng 5 điểm cực trị?

Cho hàm số  là hàm đa thức bậc bốn có đồ thị như hình vẽ bên. Hỏi có bao nhiêu giá trị của tham số m thuộc đoạn để hàm số có đúng 5 điểm cực trị? (ảnh 1)

Xem đáp án » 23/04/2022 2,006

Câu 7:

Cho hàm số y=f(x) có đồ thị f'(x) là parabol như hình vẽ bên. Khẳng định nào sau đây là đúng?

Cho hàm số   có đồ thị   là parabol như hình vẽ bên. Khẳng định nào sau đây là đúng?   (ảnh 1)

Xem đáp án » 23/04/2022 1,948

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store