Có bao nhiêu số tự nhiên có 4 chữ số khác nhau và khác 0 mà trong mỗi số luôn có mặt hai chữ số chẵn là hai chữ số lẻ?
Có bao nhiêu số tự nhiên có 4 chữ số khác nhau và khác 0 mà trong mỗi số luôn có mặt hai chữ số chẵn là hai chữ số lẻ?
Quảng cáo
Trả lời:
Phương pháp giải:
- Sử dụng tổ hợp chọn 2 chữ số chẵn và 2 chữ số lẻ.
- Sử dụng hoán vị.
Giải chi tiết:
Chọn 2 chữ số chẵn khác nhau và khác 0 có cách chọn.
Chọn 2 chữ số lẻ khác nhau có cách chọn.
Hoán đổi 4 chữ số đã chọn có cách.
Vậy có tất cả số thỏa mãn.
Đáp án C
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải:
- Tính số phần tử của không gian mẫu.
- Gọi A là biến cố: “ít nhất một lần xuất hiện mặt sáu chấm”, tính số phần tử của biến cố đối .
- Sử dụng công thức .
Giải chi tiết:
Số phần tử của không gian mẫu là .
Gọi A là biến cố: “ít nhất một lần xuất hiện mặt sáu chấm”, suy ra biến cố đối : “không có lần nào xuất hiện mặt 6 chấm” .
Vậy xác suất của biến cố A là: .
Đáp án B
Lời giải
Phương pháp giải:
- Đồ thị hàm số có TCN , TCĐ .
- Dựa vào đường TCN và dấu của hệ số a suy ra dấu của hệ số c.
- Dựa vào đường TCĐ và dấu của hệ số c suy ra dấu của hệ số d.
- Dựa vào giao điểm của đồ thị với trục tung suy ra dấu của hệ số b.
Giải chi tiết:
Đồ thị hàm số có TCN , TCĐ .
Vì đồ thị hàm số có đường tiệm cận ngang nằm phía trên trục hoành nên , mà nên .
Vì đồ thị hàm số có đường tiệm cận đứng nằm phía bên phải trục tung nên , mà
Vì đồ thị hàm số cắt trục tung tại điểm nằm phía dưới trục hoành nên , mà
Vậy .
Đáp án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.