Câu hỏi:

23/04/2022 2,456

Cho hàm số y=f(x) có đồ thị f'(x) là parabol như hình vẽ bên. Khẳng định nào sau đây là đúng?

Cho hàm số   có đồ thị   là parabol như hình vẽ bên. Khẳng định nào sau đây là đúng?   (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

Dựa vào đồ thị hàm số f'(x) xác định khoảng mà f'(x)>0 (phần đồ thị f'(x) nằm phía trên trục hoành) và f'(x)<0 (phần đồ thị f'(x) nằm phía dưới trục hoành), từ đó suy ra các khoảng đơn điệu của hàm số y=f(x).

Giải chi tiết:

Dựa vào đồ thị hàm số ta thấy: {f'(x)>0[x<1x>3f'(x)<01<x<3

Do đó hàm số y=f(x) đồng biến trên (;1);(3;+) và nghịch biến trên (1;3).

Đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải:

- Tính số phần tử của không gian mẫu.

- Gọi A là biến cố: “ít nhất một lần xuất hiện mặt sáu chấm”, tính số phần tử của biến cố đối A¯.

- Sử dụng công thức P(A)=1P(A¯).

Giải chi tiết:

Số phần tử của không gian mẫu là n(Ω)=62=36.

Gọi A là biến cố: “ít nhất một lần xuất hiện mặt sáu chấm”, suy ra biến cố đối A¯: “không có lần nào xuất hiện mặt 6 chấm” n(A¯)=52=25.

Vậy xác suất của biến cố A là: P(A)=1P(A¯)=12536=1136.

Đáp án B

Lời giải

Phương pháp giải:

- Đồ thị hàm số y=ax+bcx+d có TCN y=ac, TCĐ x=dc.

- Dựa vào đường TCN và dấu của hệ số a suy ra dấu của hệ số c.

- Dựa vào đường TCĐ và dấu của hệ số c suy ra dấu của hệ số d.

- Dựa vào giao điểm của đồ thị với trục tung suy ra dấu của hệ số b.

Giải chi tiết:

Đồ thị hàm số y=ax+bcx+d có TCN y=ac, TCĐ x=dc.

Vì đồ thị hàm số có đường tiệm cận ngang nằm phía trên trục hoành nên ac>0, mà a>0 nên c>0.

Vì đồ thị hàm số có đường tiệm cận đứng nằm phía bên phải trục tung nên dc>0dc<0, mà c>0d<0

Vì đồ thị hàm số cắt trục tung tại điểm nằm phía dưới trục hoành nên bd<0, mà d<0b>0

Vậy b>0,c>0,d<0.

Đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Giải bất phương trình log12(x1)>1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay