Câu hỏi:

23/04/2022 1,439 Lưu

Tính tổng các giá trị nguyên của tham số m trên [20;20]  để hàm số y=sinx+msinx1 nghịch biến trên khoảng (π2;π) .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

y'=1m(t1)2

Phương pháp giải:

- Đặt t=sinx, xét trên khoảng x(π2;π), tìm khoảng giá trị tương ứng của t, xét xem t có cùng tính tăng giảm với x hay không.

- Đưa bài toán về dạng tìm m đểhàm số y=f(t) đơn điệu trên khoảng cho trước.

Giải chi tiết:

Đặt t=sinx, với x(π2;π) thì t giảm từ 1 về 0.

Khi đó bài toán trở thành: Tìm m để hàm số y=t+mt1 đồng biến trên (0;1) (*).

TXĐ: D=\{1} Hàm số đã cho xác định trên (0;1). Ta có .

Do đó (*)1m(t1)2>01m>0m<1.

Kết hợp điều kiện đề bài ta có 20m<1,mm{20;19;18;...;2}.

Vậy tổng các giá trị của m thỏa mãn là 201918...2=209.

Đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải:

- Tính số phần tử của không gian mẫu.

- Gọi A là biến cố: “ít nhất một lần xuất hiện mặt sáu chấm”, tính số phần tử của biến cố đối A¯.

- Sử dụng công thức P(A)=1P(A¯).

Giải chi tiết:

Số phần tử của không gian mẫu là n(Ω)=62=36.

Gọi A là biến cố: “ít nhất một lần xuất hiện mặt sáu chấm”, suy ra biến cố đối A¯: “không có lần nào xuất hiện mặt 6 chấm” n(A¯)=52=25.

Vậy xác suất của biến cố A là: P(A)=1P(A¯)=12536=1136.

Đáp án B

Lời giải

Phương pháp giải:

- Đồ thị hàm số y=ax+bcx+d có TCN y=ac, TCĐ x=dc.

- Dựa vào đường TCN và dấu của hệ số a suy ra dấu của hệ số c.

- Dựa vào đường TCĐ và dấu của hệ số c suy ra dấu của hệ số d.

- Dựa vào giao điểm của đồ thị với trục tung suy ra dấu của hệ số b.

Giải chi tiết:

Đồ thị hàm số y=ax+bcx+d có TCN y=ac, TCĐ x=dc.

Vì đồ thị hàm số có đường tiệm cận ngang nằm phía trên trục hoành nên ac>0, mà a>0 nên c>0.

Vì đồ thị hàm số có đường tiệm cận đứng nằm phía bên phải trục tung nên dc>0dc<0, mà c>0d<0

Vì đồ thị hàm số cắt trục tung tại điểm nằm phía dưới trục hoành nên bd<0, mà d<0b>0

Vậy b>0,c>0,d<0.

Đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP