Câu hỏi:

23/04/2022 2,583 Lưu

Cho hàm số y=f(x) là hàm đa thức bậc bốn có đồ thị như hình vẽ bên. Hỏi có bao nhiêu giá trị của tham số m thuộc đoạn [12;12] để hàm số g(x)=|2f(x1)+m| có đúng 5 điểm cực trị?

Cho hàm số  là hàm đa thức bậc bốn có đồ thị như hình vẽ bên. Hỏi có bao nhiêu giá trị của tham số m thuộc đoạn để hàm số có đúng 5 điểm cực trị? (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

Hàm đa thức y=|f(x)| có số điểm cực trị là m+n trong đó m là số điểm cực trị của hàm số y=f(x), n là số giao điểm của đồ thị hàm số y=f(x) và trục hoành.

Giải chi tiết:

Xét hàm số g(x)=2f(x1)+m ta có g'(x)=2f'(x1)=0f'(x1)=0.

Dựa vào đồ thị hàm số ta thấy: Phương trình f'(x)=0 có 3 nghiệm phân biệt, do đó phương trình f'(x1)=0 cũng có 3 nghiệm phân biệt, và là 3 nghiệm bội lẻ, nên hàm số g(x)=2f(x1)+m có 3 điểm cực trị.

Để hàm số g(x)=|2f(x1)+m| có đúng 5 điểm cực trị thì đồ thị hàm số g(x)=2f(x1)+m phải cắt trục hoành tại 2 điểm phân biệt. 2f(x1)+m=0f(x1)=m2 phải có 2 nghiệm phân biệt (các nghiệm cắt qua, không tính điểm tiếp xúc).

[m226<m23[m46m<12.

Kết hợp điều kiện đề bài ta có m[12;4][6;12), m.

Vậy có 15 giá trị của m thỏa mãn yêu cầu bài toán.

Đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải:

- Tính số phần tử của không gian mẫu.

- Gọi A là biến cố: “ít nhất một lần xuất hiện mặt sáu chấm”, tính số phần tử của biến cố đối A¯.

- Sử dụng công thức P(A)=1P(A¯).

Giải chi tiết:

Số phần tử của không gian mẫu là n(Ω)=62=36.

Gọi A là biến cố: “ít nhất một lần xuất hiện mặt sáu chấm”, suy ra biến cố đối A¯: “không có lần nào xuất hiện mặt 6 chấm” n(A¯)=52=25.

Vậy xác suất của biến cố A là: P(A)=1P(A¯)=12536=1136.

Đáp án B

Lời giải

Phương pháp giải:

- Đồ thị hàm số y=ax+bcx+d có TCN y=ac, TCĐ x=dc.

- Dựa vào đường TCN và dấu của hệ số a suy ra dấu của hệ số c.

- Dựa vào đường TCĐ và dấu của hệ số c suy ra dấu của hệ số d.

- Dựa vào giao điểm của đồ thị với trục tung suy ra dấu của hệ số b.

Giải chi tiết:

Đồ thị hàm số y=ax+bcx+d có TCN y=ac, TCĐ x=dc.

Vì đồ thị hàm số có đường tiệm cận ngang nằm phía trên trục hoành nên ac>0, mà a>0 nên c>0.

Vì đồ thị hàm số có đường tiệm cận đứng nằm phía bên phải trục tung nên dc>0dc<0, mà c>0d<0

Vì đồ thị hàm số cắt trục tung tại điểm nằm phía dưới trục hoành nên bd<0, mà d<0b>0

Vậy b>0,c>0,d<0.

Đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP