Cho các số thực thỏa mãn . Gọi lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của . Tổng bằng:
Cho các số thực thỏa mãn . Gọi lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của . Tổng bằng:
Quảng cáo
Trả lời:
Phương pháp giải:
- Đặt ẩn phụ , đưa phương trình về dạng tích, giải phương trình tìm t.
- Tìm mối quan hệ giữa dạng .
- Đặt , thế vào biểu thức P.
- Quy đồng, đưa biểu thức về dạng . Tìm điều kiện để phương trình có nghiệm, từ đó xác định .
Giải chi tiết:
Ta có:
Đặt , phương trình trở thành:
Với . Khi đó tồn tại sao cho .
Ta có:
Để P tồn tại giá trị lớn nhất và giá trị nhỏ nhất thì phương trình (*) phải có nghiệm
Đáp án A
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải:
- Tính số phần tử của không gian mẫu.
- Gọi A là biến cố: “ít nhất một lần xuất hiện mặt sáu chấm”, tính số phần tử của biến cố đối .
- Sử dụng công thức .
Giải chi tiết:
Số phần tử của không gian mẫu là .
Gọi A là biến cố: “ít nhất một lần xuất hiện mặt sáu chấm”, suy ra biến cố đối : “không có lần nào xuất hiện mặt 6 chấm” .
Vậy xác suất của biến cố A là: .
Đáp án B
Lời giải
Phương pháp giải:
- Đồ thị hàm số có TCN , TCĐ .
- Dựa vào đường TCN và dấu của hệ số a suy ra dấu của hệ số c.
- Dựa vào đường TCĐ và dấu của hệ số c suy ra dấu của hệ số d.
- Dựa vào giao điểm của đồ thị với trục tung suy ra dấu của hệ số b.
Giải chi tiết:
Đồ thị hàm số có TCN , TCĐ .
Vì đồ thị hàm số có đường tiệm cận ngang nằm phía trên trục hoành nên , mà nên .
Vì đồ thị hàm số có đường tiệm cận đứng nằm phía bên phải trục tung nên , mà
Vì đồ thị hàm số cắt trục tung tại điểm nằm phía dưới trục hoành nên , mà
Vậy .
Đáp án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.