Câu hỏi:

25/03/2022 2,225

Trong bốn hàm số được liệt kẻ ở bốn phương án A, B, C, D dưới đây. Hàm số nào có bảng biến thiên như sau?

Trong bốn hàm số được liệt kẻ ở bốn phương án A, B, C, D dưới đây. Hàm số nào có bảng biến thiên như sau? (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

Hàm số đã cho là hàm bậc bốn trùng phương có dạng y=ax4+bx2+c(a0).

- Dựa vào nhánh cuối cùng của đồ thị hàm số suy ra dấu của hệ số  và loại đáp án.

- Dựa vào giao điểm của đồ thị với trục tung suy ra hệ số c và loại đáp án.

Giải chi tiết:

Hàm số đã cho là hàm bậc bốn trùng phương có dạng y=ax4+bx2+c(a0).

Vì nhánh cuối cùng của đồ thị đi xuống nên a<0 Loại đáp án A và C.

Vì đồ thị hàm số đi qua điểm (0;2) nên c=2 Loại đáp án B và chọn đáp án D.

Đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải:

- Tính số phần tử của không gian mẫu.

- Gọi A là biến cố: “ít nhất một lần xuất hiện mặt sáu chấm”, tính số phần tử của biến cố đối A¯.

- Sử dụng công thức P(A)=1P(A¯).

Giải chi tiết:

Số phần tử của không gian mẫu là n(Ω)=62=36.

Gọi A là biến cố: “ít nhất một lần xuất hiện mặt sáu chấm”, suy ra biến cố đối A¯: “không có lần nào xuất hiện mặt 6 chấm” n(A¯)=52=25.

Vậy xác suất của biến cố A là: P(A)=1P(A¯)=12536=1136.

Đáp án B

Lời giải

Phương pháp giải:

- Đồ thị hàm số y=ax+bcx+d có TCN y=ac, TCĐ x=dc.

- Dựa vào đường TCN và dấu của hệ số a suy ra dấu của hệ số c.

- Dựa vào đường TCĐ và dấu của hệ số c suy ra dấu của hệ số d.

- Dựa vào giao điểm của đồ thị với trục tung suy ra dấu của hệ số b.

Giải chi tiết:

Đồ thị hàm số y=ax+bcx+d có TCN y=ac, TCĐ x=dc.

Vì đồ thị hàm số có đường tiệm cận ngang nằm phía trên trục hoành nên ac>0, mà a>0 nên c>0.

Vì đồ thị hàm số có đường tiệm cận đứng nằm phía bên phải trục tung nên dc>0dc<0, mà c>0d<0

Vì đồ thị hàm số cắt trục tung tại điểm nằm phía dưới trục hoành nên bd<0, mà d<0b>0

Vậy b>0,c>0,d<0.

Đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Giải bất phương trình log12(x1)>1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay