Câu hỏi:

27/03/2022 2,742 Lưu

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của S lên (ABC) trùng với trung điểm của cạnh BC. Biết tam giác SBC là tam giác đều. Số đo của góc giữa SA và (ABC) bằng

A.750.

B.450.

C.300.

D.600.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình chop S.ABC  có đáy ABC  là tam giác đều cạnh a  Hình chiếu vuông góc của S  lên ABC trùng với trung điểm của cạnh  BC Biết tam giác SBC là tam giác đều. Số đo của góc giữa   và   bằng (ảnh 1)

Ta có: hình chiếu của SA trên (ABC) là AH nên (SA;(ABC)^)=(SA;AH)^=SAH^

Xét tam giác vuông SAH ta có: AH=a32;SA=a

Khi đó: AH=a32;cos(SAH^)=AHSA=32SAH^=300.

Vậy góc giữa SA và (ABC) bằng 300.

Đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tập xác định:D=.

Ta có đạo hàm của (|f(x)|)'=(f2(x))'=2f(x).f'(x)2f2(x)=f(x).f'(x)|f(x)|,  

Đạo hàm y'=(12x312x224x)(3x44x312x2+m)|3x44x312x2+m|

Xét phương trình(12x312x224x)(3x44x312x2+m)=0

Xét hàm số g(x)=3x44x312x2  trên R và g'(x)=0[x=0x=1x=2.

 Bảng biến thiên của g(x)  như sau:

Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y=|3x^4-4x^3-12x^2+m| có 5 điểm cực trị. (ảnh 1)

Hàm số đã cho có 5 điểm cực trị khi và chỉ khi tổng số nghiệm bội lẻ của  và số điểm tới hạn của  là 5, do đó ta cần có các trường hợp sau

TH1: Phương trình (*) có hai nghiệm phân biệt khác -1; 0; 2[m>032<m<5[m<05<m<32,  trường hợp này có 26 số nguyên dương.

TH2: Phương trình (*) có 3 nghiệm trong đó có một nghiệm kép trùng với một trong các nghiệm 1;0;2[m=0m=5[m=0m=5,  trường hợp này có một số nguyên dương.

Vậy có tất cả là 27 số nguyên dương thỏa mãn bài toán.

Đáp án C

Lời giải

Người ta cần xây một bể chứa nước sản xuất dạng khối hộp chữ nhật không nắp có thể tích bằng 200 m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Chi phí để xây bể là 300 nghìn đồng/m2 (chi phí được tính theo diện tích xây dựng, bao gồm diện tích đáy và diện tích xung quanh, không tính chiều dày của đáy và diện tích xung quanh, không tính chiều dày của đáy và thành bể). Hãy xác định chi phí thấp nhất để xây bể (làm tròn đến đơn vị triệu đồng). (ảnh 1)

Gọi chiều rộng của đáy bể là x(m)(x>0)

chiều dài của đáy bể là 2x(m)

Gọi chiều cao của bể là h(m)(h>0)

Thể tích của bể là: V=x.2x.h=200h=2002x2=100x2

Diện tích đáy là:S1=x.2x=2x2(m2)

Diện tích xung quanh của bể là: S2=2.x.h+2.2x.h=6.x.h(m2)

Chi phí để xây bể là: T=(S1+S2).300000=(2x2+6xh).300000=(2x2+600x).300000

Ta có: 2x2+600x=2x2+300x+300x3.2x2.300x.300x3  (theo bất đẳng thức cô si)

                                                                 3.1800003

Dấu “=” xảy ra2x2=300xx3=3002=150x=1503

Chi phí thấp nhất để xây bể là:T=3.1800003.30000050,815.106 (nghìn đồng) (triệu đồng)

Đáp án B

Câu 3

A.am.bm=(ab)m.

B.aman=amn.

C.(am)n=am.n.

D.am.an=am.n.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP